Skip to main content
Log in

Different Hybrid Prediction's Machine Learning Algorithms for Quantitative Analysis in Laser-Induced Breakdown Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Laser-induced breakdown spectroscopy (LIBS) technique is employed for quantitative analysis of aluminum samples by different classical machine learning approaches. A Q-switch Nd:YAG laser at a fundamental harmonic of 1064 nm is utilized for the creation of LIBS plasma in order to predict constituent concentrations of the aluminum standard alloys. In the current research, concentration prediction is performed by linear approaches of support vector regression (SVR), multiple linear regression (MLR), principal component analysis (PCA) integrated with MLR (PCA–MLR), and SVR (PCA–SVR), as well as nonlinear algorithms of artificial neural network (ANN), kernelized support vector regression (KSVR), and the integration of traditional principal component analysis with KSVR (PCA–KSVR), and ANN (PCA–ANN). Furthermore, dimension reduction is applied to various methodologies by the PCA algorithm in order to improve the quantitative analysis. The results indicated that the combination of PCA with the KSVR algorithm model had the best efficiency in predicting most of the elements among other classical machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Rezaei, G. Cristoforetti, E. Tognoni, S. Legnaioli, V. Palleschi, and A. Safi , Spectrochim. Acta B: At. Spectrosc., 169, Article ID 105878 (2020).

  2. F. Rezaei and S. H. Tavassoli, Phys. Plasmas, 20, Article ID 013301 (2013).

  3. S. Messaoud Aberkane, A. Safi, A. Botto, B. Campanella, S. Legnaioli, F. Poggialini, S. Raneri, F. Rezaei, and V. Palleschi, Appl. Sci., 10, Article ID 4973 (2020).

  4. F. Rezaei, Appl. Opt., 59, 3002 (2020).

    Article  ADS  Google Scholar 

  5. F. Rezaei, P. Karimi, and S. Tavassoli, Appl. Phys. B, 114, 591 (2014).

    Article  ADS  Google Scholar 

  6. Y. Yang, C. Li, S. Liu, H. Min, C. Yan, M. Yang, and J. Yu, Anal. Methods, 10 (2020).

  7. M. Boueri, V. Motto-Ros, W.-Q. Lei, L.-J. Zheng, and H.-P. Zeng, Appl. Spectrosc., 65, 307 (2011).

    Article  ADS  Google Scholar 

  8. T. A. Labutin, A. M. Popov, S. N. Raikov, S. M. Zaytsev, N. A. Labutina, and N. B. Zorov, J. Appl. Spectrosc., 80, 315–318 (2013)

    Article  ADS  Google Scholar 

  9. D. Luarte, A. K. Myakalwar, M. Velásquez, J. Álvarez, C. Sandoval, R. Fuentes, J. Yañez, and D. Sbarbaro, Anal. Methods, 9 (2021)

  10. G. S. Senesi, R. A. Romano, B. S. Marangoni, G. Nicolodelli, P. R. Villas-Boas, V. M. Benites, and D. M. B. P. Milori, J. Appl. Spectrosc., 84, 923–928 (2017).

    Article  ADS  Google Scholar 

  11. F. F. Hilario, M. L. de Mello, and E. R. Pereira-Filho, Anal. Methods, 2 (2021).

  12. S. Chatterjee, M. Singh, B. Biswal, U. K. Sinha, S. Patbhaje, and A. Sarkar, Anal. Bioanal. Chem., 9, 411 (2019).

    Google Scholar 

  13. Q. Q. Wang, L.A. He, Y. Zhao, Z. Peng, and L. Liu, Laser. Phys., 26, Article ID 065605 (2016).

  14. T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. D. Dyar, S. Mahadevan, E. A. Breves, K. H. Lepore, and S. M. Clegg, Spectrochim. Acta B: At. Spectrosc., 107, 1 (2015).

    Article  Google Scholar 

  15. J. Huang, M. Dong, S. Lu, W. Li, J. Lu, C. Liu, and J. H. Yoo, J. Anal. At. Spectrom., 33, 720 (2018).

    Article  Google Scholar 

  16. S. Laville, M. Sabsabi, and F. R. Doucet, Spectrochim. Acta B: At. Spectrosc., 62, Article ID 1557 (2007).

  17. J. Wang, S. Xue, P. Zheng, Y. Chen, and R. Peng, Anal. Lett., 2017, 50 (2000).

    Google Scholar 

  18. K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, Anal. Bioanal. Chem., 400, 3315 (2011).

    Article  Google Scholar 

  19. V. K. Unnikrishnan, K. S. Choudhari, Suresh D. Kulkarni, R. Nayak, V. B. Kartha, and C. Santhosh, RSC Adv., 3, 25872–25880 (2013).

  20. E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, Spectrochim. Acta B: At. Spectrosc., 63, 1216–1220 (2008).

    Article  Google Scholar 

  21. M. Dong, L. Wei, J. Lu, W. Li, S. Lu, S. Li, C. Liu, and J. H. Yoo, J. Anal. At. Spectrom., 34, 480–488 (2019).

    Article  Google Scholar 

  22. A. Safi, S. H. Tavassoli, G. Cristoforetti, S. Legnaioli, V. Palleschi, F. Rezaei, and E. Tognoni, J. Adv. Res., 18, 1 (2019).

    Article  Google Scholar 

  23. H. Nozari, F. Rezaei, and S. H. Tavassoli, Phys. Plasmas, 22, Article ID 093302 (2015).

  24. T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. D. Dyar, S. Mahadevan, E. A. Breves, and K. Lepore, Spectrochim. Acta B: At. Spectrosc., 107, 1–10 (2015).

    Article  Google Scholar 

  25. A. J. Smola and B. Schölkopf, Statist. Comput., 14, 199 (2004).

    Article  Google Scholar 

  26. S. Thomas, G. N. Pillai, and K. Pal, Geomat. Nat. Hazards Risk, 8, 177 (2017).

    Google Scholar 

  27. S. Shokri, M. T. Sadeghi, M. A. Marvast, and S. Narasimhan, Chem. Ind. Chem. Eng. Q, 21, 379 (2015).

    Article  Google Scholar 

  28. X. Ma, Y. Zhang, H. Cao, S. Zhang, and Y. Zhou, J. Spectrosc. (2018).

  29. M. Rezaei, S. Chaharsooghi, A. Kashan, and R. Babazadeh, Int. J. Environ. Sci. Technol., 17, Article ID 3241 (2020).

  30. A. Pouliakis, E. Karakitsou, N. Margari, P. Bountris, M. Haritou, J. Panayiotides, D. Koutsouris, and P. Karakitsos, Biomed. Eng. Comput. Biol., 7 (2016).

  31. A. Nikkhah, A. Rohani, K. A. Rosentrater, M. El Haj Assad, and S. Ghnimi, Environ. Prog. Sustain., 38, Article ID 13130 (2019).

  32. E. C. Ferreira, J. A. G. Neto, D. M. B. P. Milori, E. J. Ferreira, and J. M. Anzano, Spectrochim. Acta B: At. Spectrosc., 110, 96 (2015).

    Article  Google Scholar 

  33. H. Qin, Z. Lu, S. Yao, Z. Liab, and J. Lu, JAAS, 34, 347 (2019).

    Google Scholar 

  34. E. D'Andrea, S. Pagnotta, E. Grifoni, G. Lorenzetti, S. Legnaioli, V. Palleschi, and B. Lazzerini, Spectrochim. Acta B: At. Spectrosc., 99, 52 (2014).

    Google Scholar 

  35. J. P. Castro, D. V. Babos, and E. R. Pereira-Filho, Talanta, 208, Article ID 120443 (2020).

  36. J . Zhang, R. Li, X. Zhang, Y. Bai, P. Cao, and P. Hua, Sci. Total Environ., 649, Article ID 1314 (2019).

  37. X . Jin, Y. Zhang, and D. Yao, Int. Symp. on Neural Networks, 1022–1031 (2007).

  38. X . Cui, Q. Wang, Y. Zhao, X. Qiao, and G. Teng, Appl. Phys. B, 125, 56 (2019).

    Article  ADS  Google Scholar 

  39. S . Chutani and A. Goyal, Multimed. Tools Appl., 77, Article ID 7447 (2018).

  40. R . Noori, A. Karbassi, and M. S. Sabahi, J. Environ. Manage., 91, 767 (2010).

    Article  Google Scholar 

  41. B . G. Alhassan, F. B. Yusof, and S. M. Norrulashikin, IJMH, 4, 40–48 (2020).

    Article  Google Scholar 

  42. V. Singh, I. Gupta, and H. Gupta, Eng. Appl. Artific. Intell., 20, 249 (2007).

    Article  Google Scholar 

  43. S . K. Chaharsooghi and M. Rezaei, Int. J. Serv. Oper. Manage., 25, 120 (2016).

    Google Scholar 

  44. M . Dorofki, A. H. Elshafie, O. Jaafar, O. A. Karim, and S. Mastura, Int. Proc. Chem. Biol. Environ., 33, 39 (2012).

    Google Scholar 

  45. M . A. Shafi and N. Hamzah, 4th Int. Power Engineering and Optimization Conf., 352 (2010).

  46. F . Rezaei, Plasma Science and Technology: Progress in Physical States and Chemical Reactions, 363 (2016).

  47. W . Zhang, S.-Y. Tang, Y.-F. Zhu, and W.-P. Wang, World Acad. Sci. Eng. Technol., 41, 933 (2010).

    Google Scholar 

  48. D . Z. Antanasijević, M. D. Ristić, A. A. Perić-Grujić, and V. V. Pocajt, Int. J. Green. Gas Control, 20, 244 (2014).

    Article  Google Scholar 

  49. I. Ba baoğlu, O. Fındık, and M. Bayrak, Expert Syst. Appl., 37, Article ID 2182 (2010).

  50. V. M. Ja nakiraman, X. Nguyen, and D. Assanis, Appl. Soft Comput., 13, Article ID 2375 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Rezaei.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 3, p. 528, May–June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M., Rezaei, F. & Karimi, P. Different Hybrid Prediction's Machine Learning Algorithms for Quantitative Analysis in Laser-Induced Breakdown Spectroscopy. J Appl Spectrosc 90, 705–716 (2023). https://doi.org/10.1007/s10812-023-01585-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01585-9

Keywords

Navigation