Skip to main content
Log in

Effect of self-absorption correction on LIBS measurements by calibration curve and artificial neural network

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, laser-induced breakdown spectroscopy (LIBS) technique is used for concentration prediction of six elements of Mn, Si, Cu, Fe, Zn, and Mg in seven Al samples by two approaches of artificial neural network (ANN) and standard calibration curve. ANN is utilized as a new technique for determination and classification of various materials and elements in LIBS method. In this study, a few spectra of six aluminum standards with known concentrations are used for training of ANN. It should be noted that the mentioned network is not on trial and error basis, but it is a self-organized network. Calibration curve method, which is implemented in represented paper, determines certain relation between concentration and intensity. Then, the calibration curve and ANN methods obtained by six samples are used for prediction of the elements of the seventh standard sample in order to check the accuracy of these methods and make a comparison. In both approaches, a self-absorption correction is applied for high concentrations species and an improvement in prediction of two methods is seen. Results illustrate that at high concentrations except for Si, ANN shows a better prediction with a lower relative error compared to calibration curve approach after self-absorption correction. Primitive study without any self-absorption correction shows that ANN and calibration curve predictions with the best result are related to Fe with R 2 = 0.99 % having the minimum errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.A. Cremers, L.J. Radziemski, J. Wiley, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, England, 2006)

    Book  Google Scholar 

  2. A.W. Miziolek, V. Palleschi, I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  3. G. Cristoforetti, G. Lorenzetti, P. Benedetti, E. Tognoni, S. Legnaioli, V. Palleschi, J. Phys. D Appl. Phys. 42, 225207 (2009)

    Article  ADS  Google Scholar 

  4. N.M. Shaikh, S. Hafeez, B. Rashid, S. Mahmood, M. Baig, J. Phys. D Appl. Phys. 39, 4377 (2006)

    Article  ADS  Google Scholar 

  5. A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, T. Baumert, Appl. Phys. B 77, 391 (2003)

    Article  ADS  Google Scholar 

  6. A. Galmed, A. Kassem, H. Von Bergmann, M. Harith, Appl. Phys. B 102, 197 (2011)

    Article  ADS  Google Scholar 

  7. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E Tognoni. Appl. Phys. B 80, 559 (2005)

    Article  ADS  Google Scholar 

  8. K. Amal, S.H. Elnaby, V. Palleschi, A. Salvetti, M.A. Harith, Appl. Phys. B 83, 651 (2006)

    Article  ADS  Google Scholar 

  9. I. Rauschenbach, V. Lazic, S. Pavlov, H.W. Hübers, E. Jessberger, Spectrochim. Acta Part B 63, 1205 (2008)

    Article  ADS  Google Scholar 

  10. B. Sallé, D.A. Cremers, S. Maurice, R.C. Wiens, Spectrochim. Acta Part B 60, 479 (2005)

    Article  ADS  Google Scholar 

  11. A. Koujelev, M. Sabsabi, V. Motto-Ros, S. Laville, S. Lui, Planet. Space Sci. 58, 682 (2010)

    Article  ADS  Google Scholar 

  12. M. Jandaghi, P. Parvin, M. Torkamany, J. Sabbaghzadeh, J. Phys. D Appl. Phys. 42, 205301 (2009)

    Article  ADS  Google Scholar 

  13. K. Antony, N.J. Vasa, V.L.N.S. Raja, A. Laxmiprasad, J. Phys. D Appl. Phys. 45, 365401 (2012)

    Article  Google Scholar 

  14. A. Huber, B. Schweer, V. Philipps, R. Leyte-Gonzales, N. Gierse, M. Zlobinski, S. Brezinsek, V. Kotov, P. Mertens, U. Samm, Phys. Scr. 2011, 014028 (2011)

    Article  Google Scholar 

  15. Z. Dehua, W. Xi, N. Xiaowu, C. Jianping, L. Jian, Plasma Sources Sci. Technol. 13, 486 (2011)

    Article  Google Scholar 

  16. S.N. Abdulmadjid, M.M. Suliyanti, K.H. Kurniawan, T.J. Lie, M. Pardede, R. Hedwig, K. Kagawa, M.O. Tjia, Appl. Phys. B 82, 161 (2006)

    Article  ADS  Google Scholar 

  17. L. Sun, H. Yu, Talanta 79, 388 (2009)

    Article  Google Scholar 

  18. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Spectrochim. Acta Part B 57, 339 (2002)

    Article  ADS  Google Scholar 

  19. J. Aguilera, C. Aragón, Spectrochim. Acta Part B 63, 784 (2008)

    Article  ADS  Google Scholar 

  20. J. Aguilera, J. Bengoechea, C. Aragón, Spectrochim. Acta Part B 58, 221 (2003)

    Article  ADS  Google Scholar 

  21. C. Aragon, J. Bengoechea, J. Aguilera, Spectrochim. Acta Part B 56, 619 (2001)

    Article  ADS  Google Scholar 

  22. C. Aragón, F. Peñalba, J. Aguilera, Spectrochim. Acta Part B 60, 879 (2005)

    Article  ADS  Google Scholar 

  23. J.B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, I.L. Hecho, Anal. Bioanal. Chem. 385, 256 (2006)

    Article  Google Scholar 

  24. E.C. Ferreira, D.M.B.P. Milori, E.J. Ferreira, R.M. Da Silva, L. Martin-Neto, Spectrochim. Acta Part B 63, 1216 (2008)

    Article  ADS  Google Scholar 

  25. P. Inakollu, T. Philip, A.K. Rai, F.Y. Yueh, J.P. Singh, Spectrochim. Acta Part B 64, 99 (2009)

    Article  ADS  Google Scholar 

  26. M. Young, M. Hercher, J. Appl. Phys. 38, 4393 (1967)

    Article  ADS  Google Scholar 

  27. A. Gragossian, S.H. Tavassoli, B. Shokri, J. Appl. Phys. 105, 103304 (2009)

    Article  ADS  Google Scholar 

  28. F. Rezaei, S.H. Tavassoli, Phys. Plasmas 20, 013301 (2013)

    Article  ADS  Google Scholar 

  29. F. Rezaei, S.H. Tavassoli, Spectrochim. Acta Part B 78, 29 (2012)

    Article  ADS  Google Scholar 

  30. M. Aghaei, S. Mehrabian, S.H. Tavassoli, J. Appl. Phys. 104, 053303 (2008)

    Article  ADS  Google Scholar 

  31. A.V. Gusarov, I. Smurov, J. Appl. Phys. 97, 014307 (2005)

    Article  ADS  Google Scholar 

  32. B. Wu, Y.C. Shin, J. Appl. Phys. 99, 084310 (2006)

    Article  ADS  Google Scholar 

  33. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall PTR Upper Saddle River, NJ, USA, 1994)

    MATH  Google Scholar 

  34. J.A. Anderson, Neurocomputing: Foundations of Research (MIT, Cambridge, 1988)

    Google Scholar 

  35. J. Smits, W. Melssen, L. Buydens, G. Kateman, Chemomet. Intell. Lab. Syst. 22, 165 (1994)

    Article  Google Scholar 

  36. G. Caridakis, K. Karpouzis, A. Drosopoulos, S. Kollias, Pattern Recognit. Lett. 31, 52 (2010)

    Article  Google Scholar 

  37. I. Basheer, M. Hajmeer, J. Microbiol. Methods 43, 3 (2000)

    Article  Google Scholar 

  38. F. Rosenblatt, Psychol. Rev. 65, 386 (1958)

    Article  MathSciNet  Google Scholar 

  39. H. Demuth, M. Beale, M. Hagan, Neural Network Toolbox™ 6, User Guide, copyright 2008 (The Mathworks, Natick, 1992)

  40. R. Rojas, The Backpropagation Algorithm, Neural Networks-A Systematic Introduction, Chapter 7 (Verlag, New York, 1996)

    Google Scholar 

  41. D. Svozil, V. Kvasnicka, J. Pospichal, Chemom. Intell. Lab. 39, 43 (1997)

    Article  Google Scholar 

  42. D.A. Cirovic, Trends Analyt. Chem. 16, 148 (1997)

    Article  Google Scholar 

  43. D.E. Rumelhart, G.E. Hintont, R.J. Williams, Nature 323, 533 (1986)

    Article  ADS  Google Scholar 

  44. H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964)

    Google Scholar 

  45. N. Konjevic, M. Dimitrijevic, W. Wiese, J. Phys. Chem. Ref. Data 13, 619–933 (1984)

    Article  ADS  Google Scholar 

  46. N. Konjevic, A. Lesage, J. Fuhr, W. Wiese, J. Phys. Chem. Ref. Data 31, 819 (2002)

    Article  ADS  Google Scholar 

  47. N.M. Shaikh, PhD thesis Quaid-i-Azam University, (Islamabad, 2006)

  48. L.Č. Popović, M.S. Dimitrijević, Z. Simić, M. Dačić, A. Kovačević, S. Sahal-Bréchot, New Astron. 13, 85 (2008)

    Article  ADS  Google Scholar 

  49. M. Dimitrijevic, S. Sahal-Bréchot, Serb. Astron. J 160, 21 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rezaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaei, F., Karimi, P. & Tavassoli, S.H. Effect of self-absorption correction on LIBS measurements by calibration curve and artificial neural network. Appl. Phys. B 114, 591–600 (2014). https://doi.org/10.1007/s00340-013-5566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5566-3

Keywords

Navigation