Skip to main content
Log in

Effect of Temperature on Visible Photoluminescence of Thermally Annealed PbSe Nanocrystalline Films

  • Published:
Journal of Applied Spectroscopy Aims and scope

The photoluminescence (PL) performance of thermally annealed PbSe nanocrystalline films has been investigated at different temperatures. The visible PL signals at 655 and 466 nm are observed for the as-prepared PbSe films, and the enhanced intensities of the two PL peaks are closely related to the optimized crystallization quality of PbSe nanoparticles after annealing at 50–150°C. However, as the annealing temperature is above 200°C, the severe surface damage of PbSe films induced by the oxide impurity phases and dislocation defects results in the reduction of the crystallinity of PbSe and the lower intensities of PL signals, which have been proved by means of X-ray diffraction (XRD) characterization. In addition, another emission peak at 429 nm is observed at the annealing temperature above 200°C owing to the appearance of the PbO impurity phase, and its intensity strongly depends on the content of the PbO impurity phase, whereas the PL intensity decreases above 350°C owing to the formation of PbSeOx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Namekawa and R. Katoh, Chem. Phys. Lett., 659, 154–158 (2016).

    Article  ADS  Google Scholar 

  2. V. Arivazhagan, M. M. Parvathi, and S. Rajesh, Vacuum, 99, 95–98 (2014).

    Article  ADS  Google Scholar 

  3. L. Zhang, Y. Zhang, S. V. Kershaw, et al., Nanotechnology, 25, 105704 (2014).

    Article  ADS  Google Scholar 

  4. T. Tohidi and K. Jamshidi-Ghaleh, Appl. Phys. A, 118, 1247–1258 (2015).

    Article  ADS  Google Scholar 

  5. J. P. Heremans, V. Jovovic, E. S. Toberer, et al., Science, 321, 554–557 (2008).

    Article  ADS  Google Scholar 

  6. H. Zogg, S. Blunier, T. Hoshino, et al., IEEE Trans Electron Devices, 38, 1110–1117 (1991).

    Article  ADS  Google Scholar 

  7. F. W. Wise, Acc. Chem. Res., 33, 773–780 (2000).

    Article  Google Scholar 

  8. W. L. Ma, J. M. Luther, H. M. Zheng, et al., Nano Lett., 9, 1699–1703 (2009).

    Article  ADS  Google Scholar 

  9. Y. Liu, M. Gibbs, J. Puthussery, et al., Nano Lett., 10, 1960–1969 (2010).

    Article  ADS  Google Scholar 

  10. W. R. Feng, X. Y. Wang, H. Zhou, et al., Vacuum, 109, 108–111 (2014).

    Article  ADS  Google Scholar 

  11. F. G. Hone and F. B. Dejene, J. Mater. Sci. Mater. Electron., 28, 5979–5989 (2017).

    Article  Google Scholar 

  12. M. Bouroushian, Z. Loizos, N. Spyrellis, et al., Thin Solid Films, 229, 101–106 (1993).

    Article  ADS  Google Scholar 

  13. L. M. Peter and R. L. Wang, Electrochem. Commun., 1, 554–558 (1999).

    Article  Google Scholar 

  14. S. P. Zimin, I. I. Amirov, and V. V. Naumov, Semiconductors, 50, 1125–1129 (2016).

    Article  ADS  Google Scholar 

  15. R. P. Sugavaneshwar, T. D. Dao, T. Yokoyama, et al., Radiation Effects and Defects in Solids, 173, 112–117 (2018).

    Article  ADS  Google Scholar 

  16. L. P. Biro, R. M. Candea, G. Borodi, et al., Thin Solid Films, 165, 303–315 (1988).

    Article  ADS  Google Scholar 

  17. M. C. Torquemada, M. T. Rodrigo, G. Vergara, et al., J. Appl. Phys., 93, 1778–1784 (2003).

    Article  ADS  Google Scholar 

  18. V. Kasiyan, Z. Dashevsky, C. M. Schwarz, et al., J. Appl. Phys., 112, 086101 (2012).

    Article  ADS  Google Scholar 

  19. P. Kumar, M. Pfeffer, E. Schweda, et al., J. Alloys Compd., 724, 316–326 (2017).

    Article  Google Scholar 

  20. S. Ganguly and S. Yoo, J. Electron. Mater., 48, 6169–6175 (2019).

    Article  ADS  Google Scholar 

  21. L. N. Maskaeva, V. M. Yurk, V. F. Markov, et al., Semiconductors, 54, 1191–1197 (2020).

    Article  ADS  Google Scholar 

  22. S. Y. Yan, Q. Yang, S. L. Feng, et al., J. Electron. Mater., 49, 4929–4935 (2020).

    Article  ADS  Google Scholar 

  23. P. Kumar, M. Pfeffer, C. Berthold, et al., J. Alloys Compd., 735, 1654–1661 (2018).

    Article  Google Scholar 

  24. F. Zhao, S. Mukherjee, J. Ma, et al., Appl. Phys. Lett., 92, Article ID 211110 (2008).

  25. D. W. Ma, C. Cheng, Y. N. Zhang, et al., Opt. Mater., 37, 834–839 (2014).

    Article  ADS  Google Scholar 

  26. W. Wu, Y. L. Tang, B. Li, et al., Opt. Mater., 118, Article ID 111233 (2021).

  27. W. E. Mahmoud, Polym. Adv. Technol., 22, 2550–2555 (2011).

    Article  Google Scholar 

  28. M. R. A. Bhuiyan, M. A. A. Azad, and S. M. F. Hasan, Indian J. Pure. Appl. Phys., 49, 180–185 (2011).

    Google Scholar 

  29. G. K. Williamson and R. E. Smallman, Philos. Mag., 1, 34–46 (1956).

    Article  ADS  Google Scholar 

  30. J. I. Langford and A. J. C. Wilson, J. Appl. Cryst., 11, 102–113 (1978).

    Article  Google Scholar 

  31. T. H. Gfroerer, In: Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd. (2006), https://doi.org/10.1002/9780470027318.a2510.

  32. N. Mythili and K. T. Arulmozhi, Int. J. Sci. Eng. Res., 5, 412–416 (2014).

    Google Scholar 

  33. R. Yousefi, A. K. Zak, F. Jamali-Sheini, et al., Ceram. Int., 40, 11699–11703 (2014).

    Article  Google Scholar 

  34. C. Gautier, M. Cambon-Muller, and M. Averous, Appl. Surf. Sci., 141, 157–163 (1999).

    Article  ADS  Google Scholar 

  35. C. Cai, S. B. Han, X. T. Zhang, et al., RSC Adv., 12, 6205–6213 (2022).

    Article  ADS  Google Scholar 

  36. X. G. Sun, K. W. Gao, X. L. Pang, et al., Appl. Surf. Sci., 356, 978–985 (2015).

    Article  ADS  Google Scholar 

  37. V. V. Tomaev, L. L. Makarov, P. A. Tikhonov, et al., Glass Phys. Chem., 30, 349–355 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Xiang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, p. 350, March–April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Li, B., Xiang, X. et al. Effect of Temperature on Visible Photoluminescence of Thermally Annealed PbSe Nanocrystalline Films. J Appl Spectrosc 90, 454–460 (2023). https://doi.org/10.1007/s10812-023-01553-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01553-3

Keywords

Navigation