Skip to main content
Log in

Effect of Air Atmosphere Sensitization on Formation of PbSe pn Junctions for High-Performance Photodetectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Photodetectors based on polycrystalline lead salts are widely used to detect light in the mid-infrared range because they can be used at room temperature. In their fabrication, the sensitization process is considered to be the most critical factor. In this work, the crystalline structure of PbSe films deposited by electron-beam evaporation was analyzed by scanning electron microscopy, x-ray diffraction, and x-ray photoemission spectroscopy. The results showed that lead oxides were formed during the annealing process. We also investigated the electrical properties of the samples by Hall-effect measurements. In photodetection experiments at room temperature, the PbSe-based photodetectors showed responsivity and detectivity of 0.16 A/W and 6.66 × 108 cm Hz1/2/W, respectively. Remarkably, we measured a photocurrent even without applying a bias voltage, which implies that the pn junctions separate the carriers in these films, thus also proving the existence of micro pn junctions in the film. A carrier separation model is proposed to describe the conduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S.U.K. Mishra, Semiconductor Device Physics and Design (Berlin: Springer, 2008).

    Google Scholar 

  2. E.D. Palik, Handbook of Optical Constants of Solids (New York: Academic, 1998).

    Google Scholar 

  3. F.W. Wise, Acc. Chem. Res. 33, 773 (2000).

    Article  CAS  Google Scholar 

  4. N. Mukherjee and A. Mondal, J. Electron. Mater. 39, 1177 (2010).

    Article  CAS  Google Scholar 

  5. E. Barrios-Salgado, M.T.S. Nair, P.K. Nair, and R.A. Zingaro, Thin Solid Films 519, 7432 (2011).

    Article  CAS  Google Scholar 

  6. J.N. Humphrey and R.L. Petritz, Phys. Rev. 105, 1736 (1957).

    Article  CAS  Google Scholar 

  7. J.C. Slater, Phys. Rev. 103, 1631 (1956).

    Article  CAS  Google Scholar 

  8. L. Zhao, J. Qiu, B. Weng, C. Chang, Z. Yuan, and Z. Shi, J. Appl. Phys. 115, 084502 (2014).

    Article  Google Scholar 

  9. X. Sun, K. Gao, X. Pang, H. Yang, and A.A. Volinsky, Thin Solid Films 592, 59 (2015).

    Article  CAS  Google Scholar 

  10. C. Gautier, M. Cambon-Muller, and M. Averous, Appl. Surf. Sci. 141, 157 (1999).

    Article  CAS  Google Scholar 

  11. R.L. Petritz, Phys. Rev. 104, 1508 (1956).

    Article  CAS  Google Scholar 

  12. S. Horn, D. Lohrmann, P. Norton, K. McCormack, and A. Hutchinson, Infrared Technol. Appl. XXXI, Pts 1 and 2 5783, 401 (2005).

    Article  CAS  Google Scholar 

  13. H. Yang, L. Chen, X. Li, and J. Zheng, Mater. Lett. 169, 273 (2016).

    Article  CAS  Google Scholar 

  14. F. Zhao, S. Mukherjee, J. Ma, D. Li, S.L. Elizondo, and Z. Shi, Appl. Phys. Lett. 92, 211110 (2008).

    Article  Google Scholar 

  15. V.V. Tomaev, L.L. Makarov, P.A. Tikhonov, and A.A. Solomennikov, Glass Phys. Chem. 30, 349 (2004).

    Article  CAS  Google Scholar 

  16. S. Zheng, J. Cheng, and J. Zheng, Semicond. Optoelectron. 37, 223 (2016).

    Google Scholar 

  17. S. Masala, V. Adinolfi, J.P. Sun, S. Del Gobbo, O. Voznyy, I.J. Kramer, I.G. Hill, and E.H. Sargent, Adv. Mater. 27, 7445 (2015).

    Article  CAS  Google Scholar 

  18. X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon, Y. Cao, G. Yu, C.L. Shieh, B. Nilsson, and A.J. Heeger, Science 325, 1665 (2009).

    Article  CAS  Google Scholar 

  19. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, and Z.L. Wang, Nat. Energy 1, 16138 (2016).

    Article  CAS  Google Scholar 

  20. N. Zhang, J. Chen, Y. Huang, W. Guo, J. Yang, J. Du, X. Fan, and C. Tao, Adv. Mater. 28, 263 (2016).

    Article  Google Scholar 

  21. L. Zhang, G. Cheng, J. Chen, L. Lin, J. Wang, Y. Liu, H. Li, and Z.L. Wang, Adv. Energy Mater. 5, 1501152 (2015).

    Article  Google Scholar 

  22. H. Yang, L. Chen, J. Zheng, K. Qiao, and X. Li, Appl. Phys. A 122, 710 (2016).

    Article  Google Scholar 

  23. M.C. Torquemada, M.T. Rodrigo, G. Vergara, F.J. Sanchez, R. Almazan, M. Verdu, P. Rodriguez, V. Villamayor, L.J. Gomez, M.T. Montojo, and A. Munoz, J. Appl. Phys. 93, 1778 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (61704172) and the Venture & Innovation support Program for Chongqing Overseas Return (cx2018153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahua Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Yang, Q., Feng, S. et al. Effect of Air Atmosphere Sensitization on Formation of PbSe pn Junctions for High-Performance Photodetectors. J. Electron. Mater. 49, 4929–4935 (2020). https://doi.org/10.1007/s11664-020-08215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08215-6

Keywords

Navigation