Skip to main content
Log in

Bimolecular Recombination of Molecular Oxygen with Sol–Gel Encapsulated Hemoglobin in a Nonequilibrium T-Conformation

  • Published:
Journal of Applied Spectroscopy Aims and scope

A method has been developed for the sol–gel encapsulation of hemoglobin in the deoxygenated T-conformation followed by saturation of the protein with molecular oxygen (O2). A device for the sol–gel encapsulation of hemoglobin under anaerobic conditions has been constructed. Kinetic data for the bimolecular recombination of O2 with encapsulated hemoglobin stabilized predominantly in the oxygenated T-conformation (in an ensemble of oxygenated T-conformers were measured for the first time using time-resolved absorption spectroscopy. This method permits detailed study of the O2-binding properties of the nonequilibrium conformational states of hemoglobin, which significantly contributes to our understanding of the mechanism of the regulation of O2 binding by both native human hemoglobin and artificial oxygen carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Antonini and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Ligands, North-Holland Publication Co., Amsterdam–London (1971).

    Google Scholar 

  2. M. F. Perutz, Nature, 228, 726–739 (1970).

    Article  ADS  Google Scholar 

  3. S.Y. Park, T. Yokoyama, N. Shibayama, Y. Shiro, and J. H. R. Tame, J. Mol. Biol., 360, 690–701 (1970).

    Article  Google Scholar 

  4. S. I. Adachi, S.Y. Park, J. R. H. Tame, Y. Shiro, and N. Shibayama, Proc. Natl. Acad. Sci. USA, 100, No. 12, 7039–7044 (2003).

    Article  ADS  Google Scholar 

  5. N. Shibayama, A. SatoTomita, M. Ohki, K. Ichiyanagi, and S. Y. Park, Proc. Natl. Acad. Sci. USA, 117, 4741–4748 (2020).

    Article  ADS  Google Scholar 

  6. J. Baldwin and C. Chothia, J. Mol. Biol., 129, 175–220 (1979).

    Article  Google Scholar 

  7. F. Schotte, H. S. Cho, J. Soman, M. Wulff , J. S. Olson, and P. A. Anfi nrud, Chem. Phys., 422, 98–106 (2013).

  8. Q. H. Gibson, Biochemistry, 38, No. 16, 5191–5199 (1999).

    Article  Google Scholar 

  9. W. A. Eaton, L. K. Hanson, P. J. Stephens, J. C. Sutherland, and J. B. R. Dunn, J. Am. Chem. Soc., 100, No. 16, 4991–5003 (1978).

    Article  Google Scholar 

  10. B. I. Greene, R. M. Hochstrasser, R. B. Weisman, and W. A. Eaton, Proc. Natl. Acad. Sci. USA, 75, No. 11, 5255–5259 (1978).

    Article  ADS  Google Scholar 

  11. J. S. Olson, Mol. Asp. Med., 84, 101024 (1–15) (2022).

  12. S. V. Lepeshkevich, I. V. Sazanovich, M. V. Parkhats, S. N. Gilevich, and B. M. Dzhagarov, Chem. Sci., 12, No. 20, 7033–7047 (2021).

    Article  Google Scholar 

  13. I. Khan, C. F. Shannon, D. Dantsker, A. J. Friedman, J. P.-G. de Apodaca, and J. M. Friedman, Biochemistry, 39, 16099–16109 (2000).

    Article  Google Scholar 

  14. U. Samuni, D. Dantsker, L. J. Juszczak, S. Bettati, I. Ronda, A. Mozzarelli, and J. M. Friedman, Biochemistry, 43, 13674–13682 (2004).

    Article  Google Scholar 

  15. C. Viappiani, S. Bettati, S. Bruno, L. Ronda, S. Abbruzzetti, A. Mozzarelli, and W. A. Eaton, Proc. Natl. Acad. Sci. USA, 101, No. 40, 14414–14419 (2004).

    Article  ADS  Google Scholar 

  16. C. Viappani, S. Abbruzzetti, L. Ronda, S. Bettati, E. R. Henry, A. Mozzarelli, and W. A. Eaton, Proc. Natl. Acad. Sci. USA, 111, No. 35, 12758–12763 (2014).

    Article  ADS  Google Scholar 

  17. T. K. Das, I. Khan, D. L. Rousseau, and J. M. Friedman, Biospectroscopy, 5, S64–S70 (1999).

    Article  Google Scholar 

  18. S. V. Lepeshkevich, N. V. Konovalova, and B. M. Dzhagarov, Biokhimiya, 68, No. 5, 676–685 (2003).

    Google Scholar 

  19. E. N. Poddenezhnyi and A. A. Boiko, SolGel Synthesis of Optical Quartz Glass [in Russian], Sukhoi State Technical University of Gomel, Gomel, Belarus (2002).

    Google Scholar 

  20. L. Ronda, S. Bruno, S. Faggiano, S. Bettati, and A. Mozzarelli, Method Enzymol., 437 311–328 (2008).

    Article  Google Scholar 

  21. S. V. Lepeshkevich and B. M. Dzhagarov, Biochim. Biophys. Acta, 1784, 103–109 (2009).

    Article  Google Scholar 

  22. S. V. Lepeshkevich, M. V. Parkhats, A. S. Stashenski, V. V. Britikov, E. S. Jarnikova, S. A. Usanov, and B. M. Dzhagarov, J. Phys. Chem. A, 118, No. 10, 1864–1878 (2014).

    Article  Google Scholar 

  23. S. Unzai, R. Eich, N. Shibayama, J. S. Olson, and H. Morimoto, J. Biol. Chem., 273, No. 36, 23150–23159 (1998).

    Article  Google Scholar 

  24. S. V. Lepeshkevich, J. Karpiuk, I. V. Sazanovich, and B. M. Dzhagarov, Biochemistry, 43, No. 6, 1675–1684 (2004).

    Article  Google Scholar 

  25. S. V. Lepeshkevich, S. A. Biziuk, A. M. Lemeza, and B. M. Dzhagarov, Biochim. Biophys. Acta, 1814, No. 10, 1279–1288 (2011).

    Article  Google Scholar 

  26. P. S. Steinbach, R. Ionescu, and C. R. Matthews, Biophys. J., 82, No. 4, 2244–2255 (2002).

    Article  Google Scholar 

  27. P. J. Steinbach, J. Chem. Inf. Comp. Sci., 42, No. 6, 1476–1478 (2002).

    Article  Google Scholar 

  28. B. M. Dzhagarov and S. V. Lepeshkevich, Chem. Phys. Lett., 390, Nos. 1–3, 59–64 (2004).

    Article  ADS  Google Scholar 

  29. S. V. Lepeshkevich, N. V. Konovalova, I. I. Stepuro, and B. M. Dzhagarov, J. Mol. Struct., 735–736, 307–313 (2005).

    Article  ADS  Google Scholar 

  30. S. V. Lepeshkevich, S. N. Gilevich, M. V. Parkhats, and B. M. Dzhagarov, FEBS J., 272, No. 23, 6109–6119 (2005).

    Article  Google Scholar 

  31. S. V. Lepeshkevich, S. N. Gilevich, M. V. Parkhats, and B. M. Dzhagarov, Biochim. Biophys. Acta, 1864, No. 9, 1110–1121 (2016).

    Article  Google Scholar 

  32. S. V. Lepeshkevich, M. V. Parkhats, I. I. Stepuro, and B. M. Dzhagarov, Biochim. Biophys. Acta, 1794, No. 12, 1823–1830 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Lepeshkevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 165–173, March–April, 2023. https://doi.org/10.47612/051475062023902165173.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepeshkevich, S.V., Parkhats, M.V. & Dzhagarov, B.M. Bimolecular Recombination of Molecular Oxygen with Sol–Gel Encapsulated Hemoglobin in a Nonequilibrium T-Conformation. J Appl Spectrosc 90, 265–273 (2023). https://doi.org/10.1007/s10812-023-01531-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01531-9

Keywords

Navigation