Skip to main content
Log in

Contribution of Zone Fluctuation Potential and Disordering of Heteroboundaries to the Decreased Efficiency of Nitride-Based Leds

  • Published:
Journal of Applied Spectroscopy Aims and scope

The zone fluctuation potentials (ZFPs) in quantum wells located in the space charge region (SCR) of the p–n junction and the lateral ZFPs in quantum wells outside the SCR in blue, green, and UV LEDs based on nitrides have been experimentally determined. Green LEDs were used as an example to show that the low external quantum efficiency (EQE) of LEDs at the maximum correlated with an increase in the ZFP and disordering of heteroboundaries in quantum wells located in the SCR. The EQE at the maximum decreased because charge carriers were captured by charged centers localized at disordered heteroboundaries. The lateral ZFP in quantum wells located outside the SCR was the main parameter determining the decrease of the EQE from the moment the p–n junction opened until current densities reached 30–40 A/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Meneghini, C. De Santi, A. Tibaldi, M. Vallone, F. Bertazzi, G. Meneghesso, E. Zanoni, and M. Goano, J. Appl. Phys., 127, Article ID 211102 (2020).

  2. L. Wang, J. Jin, Ch. Mi, Zh. Hao, Y. Luo, Ch. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, Materials, 10, Article ID 1233 (2017).

  3. M. A. Caro, S. Schulz, and E. P. O'Reilly, Phys. Rev. B: Condens. Matter Mater. Phys., 88, Article ID 214103 (2013).

  4. A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, and J. J. Wierer, J. Appl. Phys., 117, Article ID 134501 (2015).

  5. L. C. Le, D. G. Zhao, D. S. Jiang, L. Li, L. L. Wu, P. Chen, Z. S. Liu, J. Yang, X. J. Li, X. G. He, J. Zhu, H. Wang, S. M. Zhang, and H. Yang, J. Appl. Phys., 114, Article ID 143706 (2013).

  6. A. I. Alhassan, N.G. Young, R. M. Farrell, C. Pynn, F. Wu, A. Y. Alyamani, Sh. Nakamura, S. P. Den Baars, and J. S. Speck, Opt. Express, 26, No. 5, 5591–5601 (2018).

    Article  ADS  Google Scholar 

  7. A. Tian, J. Liu, L. Zhang, Z. Li, M. Ikeda, Sh. Zhang, D. Li, P. Wen, F. Zhang, Y. Cheng, X. Fan, and H. Yang, Opt. Express, 25, No. 1, 415–421 (2017).

    Article  ADS  Google Scholar 

  8. T.-J. Yang, R. Shivaraman, J. S. Speck, and Y.-R. Wu, J. Appl. Phys., 116, Article ID 113104 (2014).

  9. R. Butte, L. Lahourcade, T. K. Uzdavinys, G. Callsen, M. Mensi, M. Glauser, G. Rossbach, D. Martin, J.-F. Carlin, S. Marcinkevicius, and N. Grandjean, Appl. Phys. Lett., 112, Article ID 032106 (2018).

  10. M. Piccardo, Ch.-K. Li, Y.-R. Wu, J. S. Speck, B. Bonef, R. M. Farrell, M. Filoche, L. Martinelli, J. Peretti, and C. Weisbuch, Phys. Rev. B, 95, Article ID 144205 (2017).

  11. Ch.-K. Li, M. Piccardo, L.-Sh. Lu, S. Mayboroda, L. Martinelli, J. Peretti, J. S. Speck, C. Weisbuch, M. Filoche, and Y.-R. Wu, Phys. Rev. B, 95, Article ID 144206 (2017).

  12. M. L. Badgutdinov and A. E. Yunovich, Semiconductors, 42, 429–438 (2008).

    Article  ADS  Google Scholar 

  13. S. Schulz, M. A. Caro, C. Coughlan, and E. P. O'Reilly, Phys. Rev. B: Condens. Matter Mater. Phys., 91, Article ID 035439 (2015).

  14. V. N. Petrov, V. G. Sidorov, N. A. Talnishnikh, A. E. Chernyakov, E. I. Shabunina, N. M. Shmidta, A. S. Usikov, H. Helava, and Yu. N. Makarov, Semiconductors, 50, No. 9, 1173–1179 (2016).

    Article  ADS  Google Scholar 

  15. M. Mandurrino, M. Goano, M. Vallone, F. Bertazzi, G. Ghione, G. Verzellesi, M. Meneghini, G. Meneghesso, and E. Zanoni, J. Comput. Electron., 14, 444–455 (2015).

    Article  Google Scholar 

  16. Sh. Zhou, J. Li, Y. Wu, Y. Zhang, Ch. Zheng, and Sh. Liu, J. Appl. Phys., 57, Article ID 051003 (2018).

  17. S. Steingrube, O. Breitenstein, K. Ramspeck, S. Glunz, A. Schenk, and P. P. Altermatt, J. Appl. Phys., 110, Article ID 014515 (2011).

  18. A. Y. Polyakov, N. M. Shmidt, N. B. Smirnov, I. V. Shchemerov, E. I. Shabunina, N. A. Talnishnih, I.-H. Lee, L. A. Alexanyan, S. A. Tarelkin, and S. J. Pearton, J. Appl. Phys., 125, Article ID 215701 (2019).

  19. N. A. Talnishnikh, A. E. Ivanov, A. G. Smirnova, E. I. Shabunina, and N. M. Shmidt, J. Phys.: Conf. Ser., 1199, Article ID 012015 (2019).

  20. N. M. Shmidt, A. E. Chernyakov, N. A. Talnishnih, A. E. Nikolaev, A. V. Sakharov, V. N. Petrov, E. V. Gushchina, and E. I. Shabunina, J. Cryst. Growth, 520, 82–84 (2019).

    Article  ADS  Google Scholar 

  21. R. Aleksiejunas, K. Nomeika, S. Miasojedovas, S. Nargelas, T. Malinauskas, K. Jarasiunas, O. Tuna, and M. Heuken, Phys. Status Solidi B, 252, No. 5, 977–982 (2015).

    Article  ADS  Google Scholar 

  22. M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, Phys. Rev. Lett., 116, Article ID 027401 (2015).

  23. G. Pozina, R. Ciechonski, Z. Bi, L. Samuelson, and B. Monemar, Appl. Phys. Lett., 107, Article ID 251106 (2015).

  24. A. V. Aladov, A. E. Chernyakov, A. E. Ivanov, and A. L. Zakgeim, Tech. Phys. Lett., 47, 834 (2021).

    Article  ADS  Google Scholar 

  25. E. I. Shabunina, M. E. Levinshtein, M. M. Kulagina, S. Yu. Kurin, A. E. Chernyakov, V. N. Petrov, V. V. Ratnikov, I. N. Smirnova, S. I. Troshkov, N. M. Shmidt, A. S. Usikov, H. Helava, and Yu. N. Makarov, J. Phys.: Conf. Ser., 643, Article ID 012128 (2015).

  26. A. Y. Polyakov, N. M. Shmidt, N. B. Smirnov, I. V. Shchemerov, E. I. Shabunina, N. A. Talnishnih, P. B. Lagov, Yu. S. Pavlov, L. A. Alexanyan, and S. J. Pearton, ECS J. Solid State Sci. Technol., 7, No. 6, 323–328 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Shabunina.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 1, pp. 29–34, January–February, 2023.https://doi.org/10.47612/0514-7506-2023-90-1-29-34.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabunina, E.I., Chernyakov, A.E., Ivanov, A.E. et al. Contribution of Zone Fluctuation Potential and Disordering of Heteroboundaries to the Decreased Efficiency of Nitride-Based Leds. J Appl Spectrosc 90, 24–28 (2023). https://doi.org/10.1007/s10812-023-01497-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01497-8

Keywords

Navigation