Skip to main content
Log in

Detection of Zinc in Food Based on High-Stability Zinc Coordination Supramolecular Self-Assembled Polymerenhanced Resonance Light Scattering

  • Published:
Journal of Applied Spectroscopy Aims and scope

The resonance light scattering method was used to study the coordination-driven self-assembly reaction of zinc with a bipolar tetradentate ligand and a bipolar bidentate ligand to form a supramolecular polymer. The bipolar tetradentate ligand was N,N’-bis(pyridoxal phosphate)-o-tetraminobiphenyl synthesized by the reaction of pyridoxal phosphate with biphenyltetramine, and the bipolar bidentate ligand was bis-phenanthroline-glutaraldehyde synthesized by the reaction of glutaraldehyde with 5-aminophe-nanthroline. The formation of the supramolecular polymer causes signal enhancement of resonance light scattering. Based on this, we established a new method for the determination of zinc by resonance light scattering. Under optimized experimental conditions, the zinc concentration in the range of 0.3–30 ng/mL showed a good linear relationship with the resonance light scattering intensity of the system. The detection limit of the method is 0.1 ng/mL. Using this method to determine the content of zinc in food, the recovery rate of standard addition is between 95 and 107%, and the relative standard deviation is less than 3.68%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Z. Huang, J. Ling, and J. Wang, Elastic Light Scattering Spectrometry, De Gruyter STEM (2018), p. 241.

  2. T. Wang, F. Rong, Y. Tang, M. Li, T. Feng, Q. Zhou, P. Li, and W. Huang, Prog. Polymer Sci., 116, Article ID 101389 (2021).

  3. J. Yan, W. He, X. Li, W. You, X. Liu, S. Lin, J. Chen, Y. Zhao, Y. Zhang, and F. Ji, Chem. Eng. J., 416, Article ID 129141 (2021).

  4. F. S. Al-Fartusie and S. N. Mohssan, Indian J. Adv. Chem. Sci., 5, No. 3, 127–136 (2017).

    Google Scholar 

  5. P. Trumbo, A. A. Yates, S. Schlicker, and M. Poos, J. Am. Dietetic Ass., 101, No. 3, 294–301 (2001).

    Article  Google Scholar 

  6. N. Saha, M. S. Rahman, M. B. Ahmed, J. L. Zhou, H. H. Ngo, and W. Guo, J. Environ. Man., 185, 70–78 (2017).

    Article  Google Scholar 

  7. N. Aksuner, E. Henden, I. Yilmaz, and A. Cukurovali, Dyes Pigm., 83, No. 2, 211–217 (2009).

    Article  Google Scholar 

  8. B. Fang, Y. Liang, and F. Chen, Talanta, 119, 601–605 (2014).

    Article  Google Scholar 

  9. D. Zhen, S. Shi, C. Gao, Q. Kang, X. Xiao, C. A. Grimes, and Q. Cai, Microchim. Acta, 187, No. 10, 1–10 (2020).

    Article  Google Scholar 

  10. H.-S. Kim and H.-S. Choi, Talanta, 55, No. 1, 163–169 (2001).

    Article  Google Scholar 

  11. S. Mukhopadhyay, S. Chakraborty, P. B. S. Bhadoria, B. Li, and D. C. Weindorf, Geoderma Regional, 20, Article ID e00249 (2020).

  12. H. D. E. Uygun, M. Antep, M. N. Demir, and M. Merdivan, Chem. Papers, 74, No. 10, 3399–3408 (2020).

    Article  Google Scholar 

  13. C. Su, Z. Li, D. Zhang, Z. Wang, X. Zhou, L. Liao, and X. Xiao, Biosens. Bioelectron., 148, Article ID 111819 (2020).

  14. M. Shirani, F. Salari, S. Habibollahi, and A. Akbari, Microchem. J., 152, Article ID 104340 (2020).

  15. J. L. Todolí and J. M. Mermet, Spectrochim. Acta B: At. Spectrosc., 61, No. 3, 239–283 (2006).

    Article  Google Scholar 

  16. Y. He, L. Liao, C. Xu, S. Li, R. Wu, and Y. Yang, Spectrosc. Lett., 48, No. 8, 616–621 (2015).

    Article  ADS  Google Scholar 

  17. C. Liu, Q. Li, D. Zhang, Y. Li, J. Liu, and X. Xiao, Prog. Chem., 71 (2020).

  18. T. Haino, T. Fujii, A. Watanabe, and U. Takayanagi, Proc. Nat. Acad. Sci., 106, No. 26, 10477–10481 (2009).

    Article  ADS  Google Scholar 

  19. D. Zhang, Z. Wang, J. Yang, L. Yi, L. Liao, and X. Xiao, Biosens. Bioelectron., 182, Article ID 113174 (2021).

  20. M. H. Sorouraddin, M. R. Rashidi, B. Shabani, and E. Ghorbani-Kalhor, Chin. J. Chem., 23, No. 2, 160–165 (2005).

    Article  Google Scholar 

  21. Z. Su, Y. Cheng, C. Li, Y. Xiong, L. Xiao, S. Chen, and X. Qin, Nanoscale Adv., 1, No. 9, 3607–3613 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xilin Xiao or Lifu Liao.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 6, p. 906, November–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, Q., Xu, C. et al. Detection of Zinc in Food Based on High-Stability Zinc Coordination Supramolecular Self-Assembled Polymerenhanced Resonance Light Scattering. J Appl Spectrosc 89, 1232–1240 (2023). https://doi.org/10.1007/s10812-023-01490-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01490-1

Keywords

Navigation