Skip to main content

Advertisement

Log in

SERS-based rapid detection of 2,4-dichlorophenoxyacetic acid in food matrices using molecularly imprinted magnetic polymers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In order to remove the limitations of natural antibodies or enzymes, a nano-magnetic biomimetic platform based on a surface-enhanced Raman scattering (SERS) sensor has been developed for highly sensitive capture and detection of 2,4-dichlorophenoxyacetic acid (2,4-D) in food and water samples. Magnetic-based molecular imprinted polymer nanoparticles (Mag@MIP NPs) were constructed to capture the target 2,4-D molecule via biomimetic recognition, and gold nanoparticles (Au NPs) served as SERS-based probes, which are bound to the Mag@MIP NPs by electrostatic adsorption. The as-prepared SERS-MIP sensor for sensing of 2,4-D achieved a good linear relationship with a low detection limit (LOD) of 0.00147 ng/mL within 2 h and exhibited high sensitivity. The sensor was successfully applied to detect 2,4-D in milk and tap water and achieved good recoveries ranging from 93.5 to 102.2%. Moreover, the designed sensor system exhibited satisfactory results (p > 0.05) compared to HPLC by validation analysis. Hence, the findings demonstrated that the proposed method has significant potential for practical application in food safety and environmental protection.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hassan MM, Li HH, Ahmad W, Zareef M, Wang JJ, Xie SC, Wang PY, Ouyang Q, Wang SY, Chen QS (2019) Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. LWT Food Sci Technol 105:290–297. https://doi.org/10.1016/j.lwt.2019.02.016

    Article  CAS  Google Scholar 

  2. Sheng L, Jin Y, He Y, Huang Y, Yan L, Zhao R (2017) Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2,4-dichlorophenoxyacetic acid in real samples. Talanta 174:725–732. https://doi.org/10.1016/j.talanta.2017.07.002

    Article  CAS  Google Scholar 

  3. Jung BK, Hasan Z, Jhung SH (2013) Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal-organic framework. Chem Eng J 234:99–105. https://doi.org/10.1016/j.cej.2013.08.110

    Article  CAS  Google Scholar 

  4. Wu JM, Ee KH, Lee HK (2005) Automated dynamic liquid-liquid-liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters. J Chromatogr A 1082(2):121–127. https://doi.org/10.1016/j.chroma.2005.05.077

    Article  CAS  Google Scholar 

  5. Xiong W, Tao XQ, Pang S, Yang X, Tang GL, Bian ZY (2014) Separation and quantitation of three acidic herbicide residues in tobacco and soil by dispersive solid-phase extraction and UPLC-MS/MS. J Chromatogr Sci 52(10):1326–1331. https://doi.org/10.1093/chromsci/bmt172

    Article  CAS  Google Scholar 

  6. Shin HS (2006) Determination of phenoxy acid pesticides in frog and fish tissues by gas chromatography-mass spectrometry. Chromatographia 63(11–12):579–583. https://doi.org/10.1365/s10337-006-0805-y

    Article  CAS  Google Scholar 

  7. Zhu LY, Lee HK (2001) Field amplified sample injection combined with water removal by electroosmotic flow pump in acidic buffer for analysis of phenoxy acid herbicides by capillary electrophoresis. Anal Chem 73(13):3065–3072. https://doi.org/10.1021/ac001313f

    Article  CAS  Google Scholar 

  8. Lan M, Guo Y, Zhao Y, Liu Y, Gui W, Zhu GJACA (2016) Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement. Anal Chim Acta 938(28):146–155. https://doi.org/10.1016/j.aca.2016.07.044

    Article  CAS  Google Scholar 

  9. Li H, Ahmad W, Rong Y, Chen Q, Zuo M, Ouyang Q, Guo Z (2019) Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food. Food Control 107:106761. https://doi.org/10.1016/j.foodcont.2019.106761

    Article  CAS  Google Scholar 

  10. Xie C, Gao S, Guo Q, Xu K (2010) Electrochemical sensor for 2,4-dichlorophenoxy acetic acid using molecularly imprinted polypyrrole membrane as recognition element. Microchim Acta 169(1–2):145–152. https://doi.org/10.1007/s00604-010-0303-7

    Article  CAS  Google Scholar 

  11. Xu Y, Kutsanedzie FYH, Hassan M, Zhu J, Ahmad W, Li H, Chen Q (2020) Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem 315. https://doi.org/10.1016/j.foodchem.2020.126300

  12. Gobi KV, Kim SJ, Tanaka H, Shoyama Y, Miura N (2007) Novel surface plasmon resonance (SPR) immunosensor based on monomolecular layer of physically-adsorbed ovalbumin conjugate for detection of 2,4-dichlorophenoxyacetic acid and atomic force microscopy study. Sensor Actuat B Chem 123(1):583–593. https://doi.org/10.1016/j.snb.2006.09.056

    Article  CAS  Google Scholar 

  13. Chen B, Ge B, Fu S, Li Q, Chen X, Li L, Wang J, Yang Z, Ding J, Fan W, Mao B, Shi W (2020) Ex-situ flame co-doping of tin and tungsten ions in TiO2 nanorod arrays for synergistic promotion of solar water splitting. Chem Eng Sci 226. https://doi.org/10.1016/j.ces.2020.115843

  14. Wang J, Ahmad W, Mehedi Hassan M, Zareef M, Viswadevarayalu A, Arslan M, Li H, Chen Q (2020) Landing microextraction sediment phase onto surface enhanced Raman scattering to enhance sensitivity and selectivity for chromium speciation in food and environmental samples. Food Chem 323:126812. https://doi.org/10.1016/j.foodchem.2020.126812

  15. Kutsanedzie FYH, Agyekum AA, Annavaram V, Chen Q (2020) Signal-enhanced SERS-sensors of CAR-PLS and GA-PLS coupled AgNPs for ochratoxin A and aflatoxin B1 detection. Food Chem 315. https://doi.org/10.1016/j.foodchem.2020.126231

  16. Yan M, She Y, Cao X, Ma J, Chen G, Hong S, Shao Y, Abd El-Aty AM, Wang M, Wang J (2019) A molecularly imprinted polymer with integrated gold nanoparticles for surface enhanced Raman scattering based detection of the triazine herbicides, prometryn and simetryn. Microchim Acta 186(3):143. https://doi.org/10.1007/s00604-019-3254-7

    Article  CAS  Google Scholar 

  17. Wang X, Yu J, Wu X, Fu J, Kang Q, Shen D, Li J, Chen L (2016) A molecular imprinting-based turn-on ratiometric fluorescence sensor for highly selective and sensitive detection of 2,4-dichlorophenoxyacetic acid (2,4-D). Biosens Bioelectron 81:438–444. https://doi.org/10.1016/j.bios.2016.03.031

    Article  CAS  PubMed Central  Google Scholar 

  18. Hua MZ, Feng S, Wang S, Lu X (2018) Rapid detection and quantification of 2,4-dichlorophenoxyacetic acid in milk using molecularly imprinted polymers-surface-enhanced Raman spectroscopy. Food Chem 258:254–259. https://doi.org/10.1016/j.foodchem.2018.03.075

    Article  CAS  PubMed Central  Google Scholar 

  19. Hu R, Tang R, Xu J, Lu F (2018) Chemical nanosensors based on molecularly-imprinted polymers doped with silver nanoparticles for the rapid detection of caffeine in wastewater. Anal Chim Acta 1034:176–183. https://doi.org/10.1016/j.aca.2018.06.012

    Article  CAS  PubMed Central  Google Scholar 

  20. Liu B, Han M, Guan G, Wang S, Liu R, Zhang Z (2011) Highly-controllable molecular imprinting at superparamagnetic iron oxide nanoparticles for ultrafast enrichment and separation. J Phys Chem C 115(35):17320–17327. https://doi.org/10.1021/jp205327q

    Article  CAS  Google Scholar 

  21. Shahar T, Sicron T, Mandler D (2017) Nanosphere molecularly imprinted polymers doped with gold nanoparticles for high selectivity molecular sensors. Nano Res 10(3):1056–1063. https://doi.org/10.1007/s12274-016-1366-5

    Article  CAS  Google Scholar 

  22. Yin W, Wu L, Ding F, Li Q, Wang P, Li J, Lu Z, Han H (2018) Surface-imprinted SiO2@Ag nanoparticles for the selective detection of BPA using surface enhanced Raman scattering. Sensor Actuat B-Chem 258:566–573. https://doi.org/10.1016/j.snb.2017.11.141

    Article  CAS  Google Scholar 

  23. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of au colloid monolayers. Anal Chem 67(4):735–743. https://doi.org/10.1021/ac00100a008

    Article  CAS  Google Scholar 

  24. Zhang Z, Wang Z, Wang X, Yang XJS, Chemical AB (2010) Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sensor Actuat B-Chem 147(2):428–433. https://doi.org/10.1016/j.snb.2010.02.013

    Article  CAS  Google Scholar 

  25. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517. https://doi.org/10.1063/1.458452

    Article  CAS  Google Scholar 

  26. Delley B (2000) From molecules to solids with the DMol3DMol3 approach. J Chem Phys 113:7756–7764. https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  Google Scholar 

  28. Laing S, Gracie K, Faulds K (2017) Multiplex in vitro detection using SERS. Chem Sco Rev 45(7):1901–1918. https://doi.org/10.1039/C5CS00644A

    Article  Google Scholar 

  29. Bizzarri AR, Moscetti I, Cannistraro S (2018) Surface enhanced Raman spectroscopy based immunosensor for ultrasensitive and selective detection of wild type p53 and mutant p53R175H. Anal Chim Acta 1029(31):86–96. https://doi.org/10.1016/j.aca.2018.04.049

    Article  CAS  Google Scholar 

  30. Wang LL, Wen Y, Li L, Yang X, Jia N, Li W, Meng J, Duan M, Sun X, Liu G (2018) Sensitive and label-free electrochemical lead ion biosensor based on a DNAzyme triggered G-quadruplex/hemin conformation. Biosens Bioelectron 115(15):91–96. https://doi.org/10.1016/j.bios.2018.04.054

    Article  CAS  Google Scholar 

Download references

Funding

This work has been financially supported by the National Natural Science Foundation of China (31772063, 31901772), and the Key R&D Program of Jiangsu Province (BE2017302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanhuan Li or Quansheng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Hassan, M.M., Ali, S. et al. SERS-based rapid detection of 2,4-dichlorophenoxyacetic acid in food matrices using molecularly imprinted magnetic polymers. Microchim Acta 187, 454 (2020). https://doi.org/10.1007/s00604-020-04408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04408-2

Keywords

Navigation