Skip to main content
Log in

Fluorescence of CaO \(\left({B}^{1}\Pi \to {X}^{1}{\Sigma }^{+}\right)\) in a Laser-Induced Plasma

  • Published:
Journal of Applied Spectroscopy Aims and scope

The scheme of CaO molecular fluorescence in a laser-induced plasma involving transitions between B1Π and X1Σ+ electronic states was proposed and implemented. CaO molecular bands in fluorescence spectra were observed at 408.43 (band 0, 1) and 421 nm. The band at 421 nm was assigned to the (0, 3) transition using vibrational level energies calculated by molecular constants. Selective excitation of rotational states was demonstrated and was observed as a shift of the fluorescence intensity maximum in the spectrum with a change of the exciting laser wavelength within the vibrational band. The proposed scheme for CaO fluorescence was used in spatially resolved measurements to show the distribution of calcium oxide molecules in the laser-induced plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. B. Zorov, A. M. Popov, S. M. Zaytsev, and T. A. Labutin, Russ. Chem. Rev., 84, No. 10, 1021–1050 (2015), https://doi.org/10.1070/RCR4538.

    Article  ADS  Google Scholar 

  2. J. P. Grotzinger, Science, 341, No. 6153, Article ID 1475 (2013); https://doi.org/10.1126/science.1244258.

  3. S. Maurice, B. Chide, N. Murdoch, R. D. Lorenz, D. Mimoun, R. C. Wiens, A. Stott, X. Jacob, T. Bertrand, F. Montmessin, N. L. Lanza, C. Alvarez-Llamas, S. M. Angel, M. Aung, J. Balaram, O. Beyssac, A. Cousin, G. Delory, O. Forni, T. Fouchet, O. Gasnault, H. Grip, M. Hecht, J. Hoff man, J. Laserna, J. Lasue, J. Maki, J. McClean, P. Y. Meslin, S. Le Mouelic, A. Munguira, C. E. Newman, J. A. Rodriguez Manfredi, J. Moros, A. Ollila, P. Pilleri, S. Schroder, M. de la Torre Juarez, T. Tzanetos, K. M. Stack, K. Farley, K. Williford, and the SuperCam Team, Nature, 605, No. 7911, 653–658 (2022); https://doi.org/10.1038/s41586-022-04679-0.

  4. O. Forni, M. Gaft, M. J. Toplis, S. M. Clegg, S. Maurice, R. C. Wiens, N. Mangold, O. Gasnault, V. Sautter, S. Le Mouelic, P. Y. Meslin, M. Nachon, R. E. McInroy, A. M. Ollila, A. Cousin, J. C. Bridges, N. L. Lanza, and M. D. Dyar, Geophys. Res. Lett., 42, No. 4, 1020–1028 (2015); https://doi.org/10.1002/2014GL062742.

    Article  ADS  Google Scholar 

  5. A. M. Popov, A. A. Berezhnoy, J. Borovicka, T. A. Labutin, S. M. Zaytsev, and A. V. Stolyarov, Mon. Not. R. Astron. Soc., 500, No. 4, 4296–4306 (2021); https://doi.org/10.1093/mnras/staa3487.

    Article  ADS  Google Scholar 

  6. P. Kabath, D. Jones, and M. Skarka, Reviews in Frontiers of Modern Astrophysics, Springer, Switzerland (2020), pp. 23–39; https://link.springer.com/content/pdf/10.1007/978-3-030-38509-5.pdf.

  7. J. Borovicka and P. Spurny, Icarus, 121, No. 2, 484–510 (1996); https://doi.org/10.1006/icar.1996.0104.

  8. B. Helber, B. Dias, F. Bariselli, L. F. Zavalan, L. Pittarello, S. Goderis, B. Soens, S. J. McKibbin, P. Claeys, and T. E. Magin, Astrophys. J., 876, No. 2, 120–134 (2019); https://doi.org/10.3847/1538-4357/ab16f0.

    Article  ADS  Google Scholar 

  9. B. G. Beglaryan, A. S. Zakuskin, and T. A. Labutin, Opt. Spektrosk., 130, No. 8, 1137–1141 (2022); https://doi.org/10.21883/OS.2022.08.52897.3491-22.

  10. A. Zakuskin, B. Beglaryan, and T. A. Labutin, in: Abstracts of the 2021 Int. Symp. on Molecular Spectroscopy, USA, AO/NASA Astrophysics Data System (2021), https://doi.org/10.15278/isms.2021.FL09.

  11. S. M. Zaytsev, A. M. Popov, and T. A. Labutin, Spectrochim. Acta, Part B, 158, Article ID 105632 (2019); https://doi.org/10.1016/j.sab.2019.06.002.

  12. S. M. Zaytsev, A. M. Popov, N. B. Zorov, and T. A. Labutin, J. Instrum., 9, No. 06, Article ID 06010 (2014); https://doi.org/10.1088/1748-0221/9/06/P06010.

  13. A. Lagerqvist, Ark. Fys., 8, No. 1, 83–95 (1954).

    Google Scholar 

  14. R. W. B. Pearse and A. G. Gaydon, The Identifi cation of Molecular Spectra, Chapman & Hall, London Ltd. (1976), pp. 133–135.

    Book  Google Scholar 

  15. K.-P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, 4: Constants of Diatomic Molecules, Van Nostrand Reinhold, New York (1979) [Russian translation, Mir, Moscow (1984), pp. 128–129].

  16. W. Sdorra and K. Niemax, Spectrochim. Acta, Part B, 45, No. 8, 917–926 (1990); https://doi.org/10.1016/0584-8547(90)80146-A.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Labutin.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 6, pp. 777–781, November–December, 2022. https://doi.org/10.47612/0514-7506-2022-89-6-777-781.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakuskin, A.S., Beglaryan, B.G. & Labutin, T.A. Fluorescence of CaO \(\left({B}^{1}\Pi \to {X}^{1}{\Sigma }^{+}\right)\) in a Laser-Induced Plasma. J Appl Spectrosc 89, 1035–1039 (2023). https://doi.org/10.1007/s10812-023-01463-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01463-4

Keywords

Navigation