Skip to main content
Log in

Green Synthesis, Characterization, and Antibacterial Activity of Metal Nanoparticles and Nanocomposites Using Leaves Extract of Prunus persica L.

  • Published:
Journal of Applied Spectroscopy Aims and scope

The ZnO, MgO, NiO, and AlO nanoparticles and Zn–Al and Mg–Ni composite oxides were synthesized by the green method from the Prunus persica leaves extract. The synthesized nanoparticles were characterized through FT-IR, XRD, SEM, and TEM. The FT-IR study was carried out to find out the presence of various functional groups in nanoparticles. Their size was studied by the XRD method which exposed that the nanoparticles were in the range of 19–29 nm, and the size and morphology were studied by SEM, which was further confirmed by TEM. The synthesized nanoparticles were tested for antibacterial activity. In particular, ZnO showed a good inhibitory effect with 22.31 mm of inhibition against Pseudomonas aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Shenton, T. Douglas, M. Young, G. Stubbs, and S. Mann, Adv. Mater., 11, 230–256 (1999).

    Google Scholar 

  2. N. V. Medvedeva, O. M. Ipatova, Y. D. Ivanov, A. I. Drozhzhin, and A. I. Archakov, Biochem. (Moscow), Suppl. B: Biomed. Chem., 1, 114–124 (2007), doi: https://doi.org/10.1134/S1990750807020023.

    Article  Google Scholar 

  3. S. Tang, C. Mao, Y. Liu, D. Q. Kelly, and S. K. Banerjee, IEEE Trans. Electron. Devices, 54, 433–438 (2007), doi: https://doi.org/10.1109/TED.2006.890234.

    Article  ADS  Google Scholar 

  4. K. Thakkar, S. Mhatre, and R. Parikh, Nanotechnol. Biol. Med., 6, 257–262 (2009), doi: https://doi.org/10.1016/j.nano.2009.07.002.

    Article  Google Scholar 

  5. L. Wang, X. Chen, J. Zhan, Y. Chai, C. Yang, L. Xu, et al., J. Phys. Chem. B, 109, 3189–3194 (2005), doi: https://doi.org/10.1021/jp0449152.

    Article  Google Scholar 

  6. H. You, S. Yang, B. Ding, and H. Yang, Chem. Soc. Rev., 42, 2880–2904 (2013), doi: https://doi.org/10.1039/C2CS35319A.

    Article  Google Scholar 

  7. P. Singh, Y.-J. Kim, D. Zhang, and D.-C. Yang, Trends Biotechnol., 34, 588–599 (2016), doi: https://doi.org/10.1016/j.tibtech.2016.02.006.

    Article  Google Scholar 

  8. R. S. Varma, Curr. Opin. Chem. Eng., 1, 123–128 (2012).

    Article  Google Scholar 

  9. L. F. B. Nogueira, É. J. Guidelli, S. M. Jafari, and A. P. Ramos, In: Handbook of Food Nanotechnology, Ed. S. M. Jafari, Academic Press, Cambridge, MA, USA (2020), pp. 257–278, ISBN 978-0-12-815866-1.

  10. M. Hekmati, S. Hasanirad, A. Khaledi, and D. Esmaeili, Gene Rep., 19, Article ID 100589 (2020).

  11. M. Khalaj, M. Kamali, M. E. V. Costa, and I. Capela, J. Clean. Prod., 267, Article ID 122036 (2020).

  12. M. Yadi, E. Mostafavi, B. Saleh, et al., Cells Nanomed. Biotechnol., 46, S336–S343 (2018).

    Google Scholar 

  13. D. Hou and D. O'Connor, In Sustainable Remediation of Contaminated Soil and Groundwater, Ed. D. Hou, Butterworth-Heinemann, Waltham, MA, USA (2020), pp. 1–17, ISBN 978-0-12-817982-6.

  14. M. Fasciotti, Sustain. Chem. Pharm., 6, 82–89 (2017).

    Article  Google Scholar 

  15. S. Pizato, W. R. Cortez-Vega, J. T. A. de Souza, C. Prentice-Hernández, and C. D. Borges, J. Food Safety, 33, No. 1, 30–39 (2013).

    Article  Google Scholar 

  16. R. Scorza, Sci. and Technol., 481–483 (2005).

  17. X. Zhao, W. Zhang, X. Yin, et al., Int. J. Mol. Sci., 16, No. 3, 5762–5778 (2015).

    Article  Google Scholar 

  18. G. W. Cheng and C. H. Crisosto, J. Am. Soc. Horticult. Sci., 120, No. 5, 835–838 (1995).

    Article  Google Scholar 

  19. S. Chang, C. Tan, E. N. Frankel, and D. M. Barrett, J. Agric. Food Chem., 48, No. 2, 147–151 (2000).

    Article  Google Scholar 

  20. B. A. Cevallos-Casals, D. Byrne, W. R. Okie, and L. Cisneros-Zevallos, Food Chem., 96, No. 2, 273–280 (2006).

    Article  Google Scholar 

  21. R. Infante, L. Contador, P. Rubio, D. Aros, and Á. Peña-Neira, Chil. J. Agric. Res., 71, No. 3, 445 (2011).

    Article  Google Scholar 

  22. E. Bakir, N. Türker, and Ö. İstanbullu, Gıda, 32, No. 1, 15–23 (2007).

    Google Scholar 

  23. G. Montevecchi, G. V. Simone, M. G. Mellano, F. Masino, and A. Antonelli, Fruits, 68, No. 3, 195–207 (2013).

    Article  Google Scholar 

  24. Taj Ur Rahman, Hammad Khan, Wajiha Liaqat, and Muhammad Aurang Zeb, Microscopy Res. Tech. (2021), doi: https://doi.org/10.1002/jemt.23896.

  25. A. S. Eppler, J. Zhu, E. A. Anderson, and G. A. Somorjai, Top Catal., 13, 33–41 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. U. Rahman or M. A. Zeb.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, p. 594, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, T.U., Mukhtar, S., Zeb, M.A. et al. Green Synthesis, Characterization, and Antibacterial Activity of Metal Nanoparticles and Nanocomposites Using Leaves Extract of Prunus persica L.. J Appl Spectrosc 89, 773–779 (2022). https://doi.org/10.1007/s10812-022-01424-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01424-3

Keywords

Navigation