Skip to main content
Log in

Monitoring of Laser Processing of Structural Materials Using Thermal Imaging and Spectral Technology

  • Published:
Journal of Applied Spectroscopy Aims and scope

The prospects for thermal imaging and spectral technology in organizing the monitoring of laser technology processes for high-temperature modification of structural materials are analyzed. It is shown that the use of thermal imaging technology is appropriate during setup of these processes. For continuous monitoring it is more promising to use small-sized spectral technology. Solutions are proposed in which it can be used to conduct continuous monitoring based on the determination of two parameters: the effective heating temperature of the treated surface in the interaction region of the laser radiation and a parameter associated with the effective heating area. The prospects for introducing small-sized spectral devices for continuous monitoring into the feedback loop of the control system for laser systems are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Dowden, The Theory of Laser Materials Processing, Springer Series in Materials Sciences, vol. 119, Springer, New York (2009), pp. 23–75.

    Book  Google Scholar 

  2. H. Kyogoku and T. Ikeshoji, Mech. Eng. Rev., 7, No. 1, 1–19 (2020), https://doi.org/10.1299/mer.19-00182.

    Article  Google Scholar 

  3. H. Helvajian, J. Laser Micro/Nanoengineering, 4, No. 1, 1–6 (2009), https://doi.org/10.1299/mer.19-00182.

    Article  Google Scholar 

  4. W. Xizhao, D. Jun, J. Ming, K. Shanhao, W. Baoye, and Z. Xiaoyan, Int. J. Adv. Manuf. Technol., 92, 4571–4581 (2017), https://doi.org/10.1007/s00170-017-0413-z.

    Article  Google Scholar 

  5. F. Calignano, M. Galati, and L. Iuliano, Machines, 7, No. 4, 72–93 (2019), https://doi.org/10.3390/machines7040072.

    Article  Google Scholar 

  6. M. Skalon, B. Meier, A. Gruberbauer, and S. Amancio-Filho, Materials, 13, No. 3, 808–824 (2020), https://doi.org/10.3390/ma13030808.

    Article  ADS  Google Scholar 

  7. H. Wang, W. Liu, Z. Tang, Y. Wang, X. Mei, K. M. Saleheen, Z. Wang, and H. Zhang, Opt. Eng., 59, No. 7, 070901(1–18) (2020), https://doi.org/10.1117/1.OE.59.7.070901.

  8. S. Everton, M. Hirsch, P. Stravroulakis, R. Leach, and A. N. Clare, Mater. Design, 95, No. 5, 431–445 (2016), https://doi.org/10.1016/j.matdes.2016.01.099.

    Article  Google Scholar 

  9. I. Eriksson, Optical Monitoring and Analysis of Laser Welding, Universitetstryckeriet, Luleе University of Technology (2011), pp. 1–82.

    Google Scholar 

  10. X. He, and T. Deb Roy, J. Appl. Phys., 94, No. 10, 6949–6958 (2003), https://doi.org/10.1063/1.1622118.

    Article  ADS  Google Scholar 

  11. A. N. Cherepanov and V. P. Shapeev, Teplofi z. Aéromekh., 20, No. 2, 239–253 (2013).

    Google Scholar 

  12. V. I. Bogdanovich, M. G. Georbelidze, A. V. Sotov, N. D. Pronichev, V. G. Smelov, and A. V. Afapovichev, Izv. Samarskogo Nauch. Tsentra Ross. AN, 19, No. 4, 105–114 (2017).

    Google Scholar 

  13. T. Sibillano, A. Ancona, V. Berardi, and P. Lugara, Sensors, 9, No. 5, 3376–3385 (2009), https://doi.org/10.3390/s90503376.

    Article  ADS  Google Scholar 

  14. Y. Saadlaoui, J. Sijobert, M. Doubenskaia, F. Bertrand, E. Feulvarch, and J. M. Bergheau, Crystals, 10, No. 4, 246 (2020), https://doi.org/10.3390/cryst10040246.

    Article  Google Scholar 

  15. D. You, X. Gao, and S. Katayama, Science and Technology of Welding and Joining, 19, No. 3, 81–201 (2014), https://doi.org/10.1179/1362171813Y.0000000180.

    Article  Google Scholar 

  16. J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, Int. J. Adv. Manuf. Technol., 94, 1825–1847 (2017), https://doi.org/10.1007/s00170-017-0461-4.

    Article  Google Scholar 

  17. Q. Pengyuan, W. Gang, G. Zhen, L. Xianghua, and W. Liu, Materials, 12, No. 20, 3322–3333 (2019), https://doi.org/10.3390/ma12203322.

    Article  Google Scholar 

  18. G. Repossini, V. Laguzza, G. Marco, and B. Colosima, Additive Manuf., 16, 35–48 (2017), https://doi.org/10.1016/j.addma.2017.05.004.

    Article  Google Scholar 

  19. I. Zhirnov, D. Kotoban, and A. Gusarov, Appl. Phys. A, 124, No. 2, 157–166 (2018), https://doi.org/10.1007/s00339-017-1532-y.

    Article  ADS  Google Scholar 

  20. I. Zhirnov, C. Protasov, D. Kotoban, and A. Gusarov, J. Thermal Spray Technol., 26, No. 4, 648–660 (2017), https://doi.org/10.1007/s11666-017-0523-z.

    Article  ADS  Google Scholar 

  21. D. Dagel, G. Grossetete, and O. Danny, Measurement of Laser Weld Temperatures for 3D Model Input, Sandia National Laboratories, New Mexico, US (2016), pp. 4–28.

    Book  Google Scholar 

  22. D. Qu, J. Berry, N. Calta, M. Crumb, G. Guss, and M. J. Mathews, Phys. Rev. Appl., 14, 014031–014043 (2020), https://doi.org/10.1103/PhysRevApplied.14.014031.

    Article  ADS  Google Scholar 

  23. L. Jacquemetton, M. Piltch, and D. Beckett, Thermal Calibration of Commercial Melt Pool Monitoring Sensors on a Laser Powder Bed Fusion System, Natl. Inst. Stand. Technol. Adv. Man. Ser., 100–35 (2020), p. 1–20, https://doi.org/10.6028/NIST.AMS.100-35.

  24. W. Wójcik, V. Firago, A. Smolarz, I. Shedreyeva, and D. Yeraliyeva, Sensors, 22, 742–764 (2022), https://doi.org/10.3390/s22030742.

    Article  ADS  Google Scholar 

  25. V. Firago and W. Wojcik, Przegląd Elektrotech., 91, No. 2, 208–214 (2015).

    Google Scholar 

  26. V. A. Firago, Digital Thermographys [in Russian], BGU, Minsk (2019), pp. 195, 236.

  27. IMEC. Hyperspectral Imaging. Sensors. Available online at: https://www.imecint.com/en/hyper–spectral imaging (accessed on Sept. 17, 2018)

  28. A. N. Magunov, Spectral Pyrometry [in Russian], Fizmatlit, Moscow (2012), pp. 23–38.

    Google Scholar 

  29. V. A. Firago, W. Wojcik, and M. S. Dzhunisbekov, Russ. Metallurgy (Metally), 11, 1224–1230 (2019), https://doi.org/10.1134/S0036029519110053.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Firago.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, pp. 568–579, July–August, 2022. https://doi.org/10.47612/0514-7506-2022-89-4-568-579.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firago, V.A., Devoino, O.G., Lapkovsky, A.S. et al. Monitoring of Laser Processing of Structural Materials Using Thermal Imaging and Spectral Technology. J Appl Spectrosc 89, 731–741 (2022). https://doi.org/10.1007/s10812-022-01418-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01418-1

Keywords

Navigation