Skip to main content
Log in

Formation of Thaumasite in Ammonium Salt Solution Based on Raman Spectroscopy and Thermodynamic Analysis

  • Published:
Journal of Applied Spectroscopy Aims and scope

Cement-based materials sometimes encounter sulfate attack and ammonium salt environments during service, which can severely affect the long-term durability of these materials. In cement-based materials, the formation of thaumasite usually requires five conditions: sulfate, silicate, carbonate, and sufficient water and low temperature (<15°C). However, under other conditions, thaumasite can also form. To study the changing trend of thaumasite in an ammonium salt solution at ambient temperature (25°C), the formation process of thaumasite was studied by laser Raman spectroscopy and thermodynamic analysis. The reaction was accelerated in the presence of \( {\mathrm{NH}}_4^{+} \) ions at ambient temperature, and the presence of \( {\mathrm{SO}}_4^{2-} \) anions enhanced this trend; this enhancement was even greater than that at low temperature. The change in the Gibbs free energy of formation of thaumasite in the presence versus the absence of \( {\mathrm{NH}}_4^{+} \) ions was studied using thermodynamic methods, and the acceleration mechanism of the formation of thaumasite in the presence of \( {\mathrm{NH}}_4^{+} \) ions was explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tang, X. Zuo, S. He, O. Ayinde, and G. Yin, Construct. Build. Mater., 129, 61–69 (2016).

    Article  Google Scholar 

  2. X. Wang, Z. Pan, X. Shen, et al., Construct. Build. Mater., 124, 786–793 (2016).

    Article  Google Scholar 

  3. X. Wang and Z. Pan, Construct. Build. Mater., 152, 434–443 (2017).

    Article  Google Scholar 

  4. B. Zhang, F. Chen, X. Tian, et al., Research on Water Quality Variation of Seven Major Water Systems in China from 2005 to 2017, Yangtze River 2020, 51, No. 7, 33–39 (2020).

  5. S. Miletic, M. Djuric, A. Mihajlov, et al., J. Serbian Chem. Soc., 74, No. 3, 331–347 (2009).

    Article  Google Scholar 

  6. R. A. Edge and H. F. W. Taylor, Nature, 224 (5217), 363–364 (1969).

    Article  ADS  Google Scholar 

  7. S. V. Goryainov, J. Raman Spectrosc., 47, No. 8, 984–992 (2016).

    Article  ADS  Google Scholar 

  8. G. D. Gatta, G. J. McIntyre, J. G. Swanson, et al., Am. Mineral., 97, No. 7, 1060–1069 (2012).

    Article  ADS  Google Scholar 

  9. M. Ardit, G. Cruciani, M. Dondi, et al., Mineralog. Mag., 78, No. 5, 1193–1208 (2014).

    Article  ADS  Google Scholar 

  10. D. Deng, J. Xiao, Q. Yuan, et al., J. Build. Mater., 5, 532–541 (2005).

    Google Scholar 

  11. H. F. W. Taylor, Cement Chemistry, Lightning Source Inc. (1997).

  12. W. Shen, Cement Technology, Hubei, Wuhan University of Technology Press (1991).

    Google Scholar 

  13. S. Mileti, M. Ili, S. Otovi, R. Foli, and Y. Ivanov, Construct. Build. Mater., 13, No. 3, 117–127 (1999).

    Article  Google Scholar 

  14. S. Sahu, D. L. Exline, and M. P. Nelson, Cem. Concr. Compos., 24, No. 3, 347–350 (2002).

    Article  Google Scholar 

  15. D. Deng, J. Xiao, Q. Yuan, et al., J. Build. Mater., 4, 400–409 (2005).

    Google Scholar 

  16. J. Xiao, Q. Meng, B. Ma, et al., J. Build. Mater., 18, No. 2, 263–268 (2015).

    Article  Google Scholar 

  17. Y. Luo, S. Zhou, C. Wang, et al., Construct. Build. Mater., 229, Article ID 116865 (2019).

  18. C. Li, S. Li, and Y. Bai, J. Build. Mater., 17, No. 3, 501–506 (2014).

    ADS  Google Scholar 

  19. K. Sotiriadis, E. Nikolopoulou, S. Tsivilis, et al., Construct. Build. Mater., 43, 156–164 (2013).

    Article  Google Scholar 

  20. J. Xiao, Q. Meng, B. Ma, et al., J. Build. Mater., 18, No. 3, 369–374 (2015).

    Google Scholar 

  21. P. Atkins and J. de Paula, Physical Chemistry, New York, W. H. Freeman and Co. (2010).

  22. T. Schmidt, B. Lothenbach, M. Romer, et al., Cem. Concr. Res., 38, No. 3, 337–349 (2008).

    Article  Google Scholar 

  23. B. Lothenbach, T. Matschei, G. Möschner, and F. P. Glasser, Cem. Concr. Res., 38, No. 1, 1–18 (2008).

    Article  Google Scholar 

  24. J. G. Speight, Lange's Handbook of Chemistry, McGraw-Hill Professional Publishing (2004).

  25. A. Solonenko and V. V. Boksgorn, Russ. Chem. Bull., 66, No. 3, 439–446 (2017).

    Article  Google Scholar 

  26. E. Thilo, Chin. Sci. Bull., 14, 429–431 (1957).

    Google Scholar 

  27. A. K. Katz, J. P. Glusker, S. A. Beebe, et al., J. Am. Chem. Soc., 118, No. 24, 5752–5763 (1996).

    Article  Google Scholar 

  28. M. Kanzaki, Mineralog. J., 18, No. 1, 1–8 (1996).

    Article  ADS  Google Scholar 

  29. T. An-Pang and K. Long, Acta Chim. Sin., 23, No. 2, 90–98 (1957).

    Google Scholar 

  30. Y. Xi, Chemical Structure, Bonding and Classification of Silicates, China Construction Industry Press (1989)

  31. R. Chen, J. Wang, H. Liu, et al., Acta Chim. Sin., 11, 1084–1086 (1982).

    Google Scholar 

  32. R. K. Iler, The Chemistry of Silica-Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, New York, Wiley-Interscience Publication (1979).

  33. F. Xiyi, Inorganic Chemistry Series, III, Beijing, Science Press (1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Wang.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, pp. 491–497, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, S. & Li, Y. Formation of Thaumasite in Ammonium Salt Solution Based on Raman Spectroscopy and Thermodynamic Analysis. J Appl Spectrosc 89, 658–664 (2022). https://doi.org/10.1007/s10812-022-01407-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01407-4

Keywords

Navigation