Skip to main content

Advertisement

Log in

Temperature Dependence of Optical Properties of Two-Layered Metal–Dielectric Spherical Nanoparticles

  • Published:
Journal of Applied Spectroscopy Aims and scope

The dependences of the radiation absorption efficiency factors by spherical nanoparticles of a core–shell system of gold–quartz and quartz–gold materials with core radii r0 = 40, 50, 60, and 70 nm and shell thicknesses ∆r1 = 10, 20, and 30 nm in the wavelength range 300–3000 nm at particle and surrounding quartz temperatures T = 300 and 1173 K were theoretically calculated and studied. Radiation absorption by a nanoparticle changed essentially as the temperature of the nanoparticle and environment increased. The change of optical properties of the nanoparticles significantly influenced the energy absorption efficiency of solar or optical radiation by the nanoparticles, the heating temperature of the nanoparticles and the environment, and further thermal processes. The results were interesting for the creation of high-temperature solid nanoparticles absorbing solar radiation and new materials for high-temperature nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Amjad, G. Raza, Y. Xin, S. Pervaiz, and D. Wen, Appl. Energy, 206, 393–400 (2017).

    Article  Google Scholar 

  2. K. S. Reddy, N. R. Kamnapure, and S. Srivastava, Int. J. Low-Carbon Technol., 12, 1–23 (2017).

    Google Scholar 

  3. V. K. Pustovalov, SN Appl. Sci., 1, No. 4, Art. 356 (2019).

  4. F. Chen, B. Qiao, S. Dai, X. Zhang, and W. Ji, Opt. Mater. Express, 8, 3197–3205 (2018).

    Article  ADS  Google Scholar 

  5. V. Renteria-Tapia, C. Velasquez-Ordonez, M. Ojeda Martinez, E. Barrera-Calva, and F. Gonsalez-Garcia, Energy Proc., 57, 2241–2248 (2014).

    Article  Google Scholar 

  6. J. D. Gao, C. Y. Zhao, and B. X. Wang, J. Appl. Phys., 121, Article ID 113105 (2017).

  7. Y. Yeng, M. Ghebrebrhan, P. Bermel, W. Chan, J. Joannopoulos, M. Soljacic, and I. Celanovic, Proc. Natl. Acad. Sci. USA, 109, No. 7, 2280–2285 (2012).

    Article  ADS  Google Scholar 

  8. I. Celanovic and M. Soljacic, J. Optics, 18, 36–37 (2016).

    Google Scholar 

  9. P. Kumar, M. C. Mathpal, J. Prakash, G. Jagannath, W. D. Roos, and H. C. Swart, Mater. Res. Bull., 125, Article ID 110799 (2020).

  10. A. Lenert, D. Bierman, Y. Nam, W. Chan, I. Celanovic, M. Soljacic, and E. Wang, Nat. Nanotechnol., 9, 126–130 (2014).

    Article  ADS  Google Scholar 

  11. G. Huang, S. R. Curt, K. Wang, and C. N. Markides. Nano Mater. Sci., 2, 183–203 (2020).

    Article  Google Scholar 

  12. S. V. Boriskina et al., J. Opt., 18, Article ID 073004 (2016).

  13. F. Cao, L. Tang, Y. Li, A. Litvinchuk, J. Bao, and Z. Ren, Sol. Energy Mater. Sol. Cells, 160, 12–17 (2017).

    Article  Google Scholar 

  14. J. U. Kim, S. Lee, S. J. Kang, and T. Kim, Nanoscale, 10, 21555–21574 (2018).

    Article  Google Scholar 

  15. L. Escoubas, M. Carlberg, J. Le Rouzo, F. Pourcin, J. Ackermann, O. Margeat, C. Reynaud, D. Duche, J.-J. Simon, R.-M. Sauvage, and G. Berginc. Prog. Quantum Electron., 63, 1–22 (2019).

    Article  ADS  Google Scholar 

  16. I. Mayergoyz, Plasmon Resonances in Nanoparticles, Singapore, World Scientific Publishing (2013).

    Book  Google Scholar 

  17. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York (1983).

    Google Scholar 

  18. Refractive index database (2021); http://refractiveindex.info/.

  19. V. K. Pustovalov and L. G. Astaf’eva, Opt. Spektrosk., 129, 307–313 (2021).

    Article  Google Scholar 

  20. R. Chaudhuri and S. Paria, Chem. Rev., 112, 2373–2433 (2011).

    Article  Google Scholar 

  21. R. Bardhan, N. Grady, T. Ali, and N. Halas, ACS Nano, 4, 6169–6179 (2010).

    Article  Google Scholar 

  22. K. Wang, Y. Wang, C. Wang, X. Jia, J. Li, R. Xiao, and S. Wang, RSC Adv., 8, 30825–30831 (2018).

    Article  ADS  Google Scholar 

  23. Y.-C. Wang, E. Rheaume, F. Lesage, and A. Kakkar, Molecules, 23, 2851–2883 (2018).

    Article  Google Scholar 

  24. V. Pustovalov, L. Astafyeva, and B. Jean, Nanotechnology, 20, Article ID 225105 (2009).

  25. A. Guerrero-Martınez, J. Perez-Juste, and L. M. Liz-Marzan, Adv. Mater., 22, 1182–1195 (2010).

    Article  Google Scholar 

  26. H. B. Lee, Y. M. Yoo, and Y.-H. Han, Scr. Mater., 55, 1127–1129 (2006).

    Article  Google Scholar 

  27. J. Liu, C. Kan, H. Xu, Y. Ni, Y. Li, and D. Shi, Plasmonic, 9, 1007–1014 (2014).

    Article  Google Scholar 

  28. F. Kreith and W. Black, Basic Heat Transfer, Harper and Row, New York (1980).

    Google Scholar 

  29. L. N. Aksyutov, J. Appl. Spectrosc., 26, 656–662 (1977).

    Article  ADS  Google Scholar 

  30. J. H. Wray and J. T. Neu, J. Opt. Soc. Am., 59, 774–781 (1969).

    Article  ADS  Google Scholar 

  31. V. K. Pustovalov, RSC Adv., 6, 81266–81273 (2016).

    Article  ADS  Google Scholar 

  32. M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford (1964).

    MATH  Google Scholar 

  33. N. Daneshfar, Phys. Plasmas, 21, Article ID 063301 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Astafyeva.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, pp. 470–476, July–August, 2022. https://doi.org/10.47612/0514-7506-2022-89-4-470-476.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pustovalov, V.K., Astafyeva, L.G. Temperature Dependence of Optical Properties of Two-Layered Metal–Dielectric Spherical Nanoparticles. J Appl Spectrosc 89, 638–643 (2022). https://doi.org/10.1007/s10812-022-01404-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01404-7

Keywords

Navigation