Skip to main content
Log in

Analysis of Porous Nanosilicon by Raman Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Technologies for the production of nanostructured silicon and porous nanosilicon are presented. A method for the synthesis of porous nanosilicon by electrochemical etching is described. The main parameters for the generation of porous silicon with given characteristics are presented. The results from investigations of samples of porous silicon obtained with a InVia Raman Renishaw spectrometer, with which it is possible to record and identify both amorphous and crystalline phase components in samples, are described. The crystal structure of the samples was determined from the results of granulometric investigations. The absence of amorphous silicon in the samples was confirmed by approximation of the Raman spectra. A shift of the lines toward smaller energies, characteristic of nanoparticles with nanoparticles with decreased size, is observed in the Raman spectra. A stable strong band in the region of 700–900 nm, which confirms the nanocrystalline nature of the samples, is observed in the photoluminescence spectra. The effectiveness and sensitivity of Raman spectroscopy, which make it possible to determine even insignificant changes in the crystalline and amorphous fraction of the silicon structures, were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Afanas’ev, E. I. Terukov, and A. A. Sherchenkov, Thin-Film Solar Cells Based on Silicon [in Russian], St. Petersburg State Electrotechnical University, LETI (2011), pp. 142–151.

  2. A. A. Ishchenko, G. V. Fetisov, and L. A. Aslanov, Nanosilicon: Properties, applications, Methods of Investigation and Control [in Russian], Fizmatlit, Moscow (2011), pp. 93–107.

  3. Arvind Shah, Thin-Film Silicon Solar Cells, EPFL Press (2010).

  4. S. V. Zabotnov, F. V. Kashaev, D. V. Shuleiko, M. B. Gongal’skii, L A. Golovan’, P. K. Kashkarov, D. A. Loginova, P. D. Agrba, E. A. Sergeeva, and M. Yu. Kirillin, Kvant. Élektron., 47, No. 7, 638–646 (2017).

  5. N. V. Sharonova, A. A. Ischenko, E. Y. Yagudaeva, S. V. Sizova, E. V. Smirnova, A. Y. Ermakova, A. P. Sviridov, and V. P. Zubov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 62, No. 9, 86–96 (2019); https://doi.org/10.6060/ivkkt.20196209.5929.

  6. N. V. Latukhina, Proc. Eng., 104, 157–161 (2019).

    Article  Google Scholar 

  7. N. V. Latukhina, Proceedings of XVI All-Russia Youth Samara Conference of Scientific Works on Optics and Laser Physics [in Russian], Samara, November 13–17, 2018, Physics Institute, Russian Academy of Sciences, Moscow (2018), pp. 136–141.

  8. N. V. Latukhina, Photon. Rus., 12, No. 5, 508–513 (2018).

    Article  Google Scholar 

  9. H. J. Kim, Thin Solid Films, 511, 411–414 (2006).

    ADS  Google Scholar 

  10. H. Degans, Photovoltaic. Int. J., 83–85, August (2008).

  11. R. Chaoui, Desalination, 209, 118–121 (2007).

    Article  Google Scholar 

  12. R. S. Dubey, J. Optoelectron. Biomed. Mater., 1, 8–14 (2009).

  13. M. Lipinski, Optoelectron. Rev., 8, No. 4, 418–420 (2000).

    Google Scholar 

  14. S. A. Sokolov, R. Rösslhuber, D. M. Zhigunov, N. V. Latukhina, and V. Yu. Timoshenko, Thin Solid Films, 562, 462–466 (2014).

    Article  ADS  Google Scholar 

  15. S. Ashmontas, Lett. Zh. Tekhn. Fiz., 32, No. 14, 8–14 (2006).

    Google Scholar 

  16. D. I. Bilenko, Fiz. Tekh. Poluprovodn., 41, No. 8, 945–949 (2007).

    Google Scholar 

  17. D. I. Bilenko, Fiz. Tekh. Poluprovodn, 39, No. 7, 834–838 (2005).

    Google Scholar 

  18. V. V. Bolotov, Fiz. Tekh. Poluprovodn, 41, No. 8, 981–983 (2007).

    Google Scholar 

  19. O. I. Ksenofontova, A. V. Vasin, V. V. Egorov, A. V. Bobyl’, F. Yu. Soldatenkov, E. I. Terukov, V. P. Ulin, N. V. Ulin, and O. I. Kiselev, Zh. Tekh. Fiz., 84, No. 1, 67–78 (2014).

  20. V. V. Tregulov, Vestn. MGOU, Ser. FizikaMatematika, No. 1 (2015).

  21. Leigh Canham, Handbook of Porous Silicon, ISBN 978-3-319-71380-9 (2018), pp. 3–37.

  22. R. I. Batalov, Av. F. Valeev, V. I. Nuzhdin, V. V. Vorob'ev, Yu. N. Osin, D. V. Lebedev, A. A. Bukharaev, and A. L. Stepanov, Izv. Vyssh. Uchebn. Zaved., Mater. Élektron. Tekhn., 4, 278–283 (2014); https://doi.org/10.17073/1609-3577-2014-4-278-283.

  23. Giuseppe Faraci, Santo Gibilisco, Paola Russo, Agata R. Pennisi, and Salvo La Rosa, Phys. Rev. B, 73, 033307(1–4) (2006); https://doi.org/10.1103/PhysRevB.73.033307.

  24. V. V. Tregulov, Porous Silicon: Technology, Properties, Application, Monograph, Ryazan, Ministry of Education and Science of the Russian Federation [in Russian], S. A. Esenin Ryazan State University (2011), pp. 4–9.

  25. V. A. Volodin and D. I. Koshelev, J. Raman Spectrosc., 44, No. 12, 1760–1764 (2013).

    Article  ADS  Google Scholar 

  26. C. Meiera, S. Lüttjohanna, V. G. Kravets, H. Nienhaus, A. Lorke, and H. Wiggersb, Phisica E, 32, 155–158 (2006); https://doi.org/10.1016/j.physe.2005.12.030.

    Article  ADS  Google Scholar 

  27. P. Mishra and K. P. Jain, Mater. Sci. Eng. Eng. B, 95, 202–213 (2002); https://doi.org/10.1016/S0921-5107(02)00234-9.

    Article  Google Scholar 

  28. Y.-J. Jung, J.-H. Yoon, R. G. Elliman, and A. R. Wilkinson, J. Appl. Phys., 104, Article ID 083518 (2008).

  29. S. Yu. Turishchev, A. S. Lenshin, and E. P. Domashevskaya, Phys. Status Solidi С, 6, No. 7, 1651–1655 (2009); https://doi.org/10.1002/pssc.200881015.

    Article  Google Scholar 

  30. V. A. Moshnikov, I. Gracheva, A. S. Lenshin, and Y. M. Spivak, J. Non-Crystal. Solids, 358, No. 3, 590–595 (2012).

    Article  ADS  Google Scholar 

  31. D. Jurbergs and E. Rogojina, Appl. Phys. Lett., 88, 233116(1–3) (2006); https://doi.org/10.1063/1.2210788.

  32. G. A. Kachurin, V. A. Volodin, and D. I. Tetel’baum, Fiz. Tekh. Poluprovodn., 39, No. 5, 582–586 (2005).

    Google Scholar 

  33. N. E. Korsunskaya, T. R. Stara, L. Yu. Khomenkova, E. V. Svezhentsova, N. N. Mel’nichenko, and F. F. Sizov, Fiz. Tekh. Poluprovodn., 44, No. 1, 82–86 (2010).

    Google Scholar 

  34. J. Salonen, V.-P. Lehto, and E. Laine, Appl. Surface Sci., 120, 191–198 (1997).

    Article  ADS  Google Scholar 

  35. V. M. Kashkarov, I. V. Nazarikov, A. S. Lenshin, V. A. Terekhov, S. Yu. Turishchev, B. L. Agapov, K. N. Pankov, and E. P. Domashevskaya, Phys. Status Solidi С, 6, No. 7, 1557–1560 (2009).

    Article  Google Scholar 

  36. A. S. Len’shin and E. V. Maraeva, Izv. SPbGETU, No. 6, LETI, 9–16 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Rotshteyn.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 1, pp. 51–56, January–February, 2022. https://doi.org/10.47612/0514-7506-2022-89-1-51-56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotshteyn, V.M., Turdaliev, T.K. & Ashurov, K.B. Analysis of Porous Nanosilicon by Raman Spectroscopy. J Appl Spectrosc 89, 43–48 (2022). https://doi.org/10.1007/s10812-022-01323-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01323-7

Keywords

Navigation