Skip to main content
Log in

Development and Validation of a First-Derivative Spectrophotometric Method for the Estimation of an Antipsychotic Drug in Pharmaceutical Formulations and Forced Degradation Studies

  • Published:
Journal of Applied Spectroscopy Aims and scope

A simple, cost-effective, and stability-indicating first-derivative spectrophotometric technique for quantifying Paliperidone in different pharmaceutical formulations is developed. In this method, the drug shows a maximum dA/dλ at 245 nm. The drug follows Beer–Lambert’s law in the concentration range 2.5–70 μg/mL. Various degradation studies for the drug, such as acid hydrolysis, base hydrolysis, thermal, oxidative, and photolytic degradation are performed, and the results thereof are within the acceptable limit. The analytical method validation parameters like linearity, LOD, LOQ, precision, accuracy, etc. are conducted for the method as per the ICH Q2R(1) guideline, and the values are within the allowable range. Hence, for the determination of the Paliperidone quantity in pharmaceutical dosage forms, the developed process is a feasible one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Sawant and V. U. Barge, J. Pharm. Res., 6, No. 1, 39–47 (2013).

    Google Scholar 

  2. B. M. Firake, H. P. Bhutada, R. S. Talekar, and D. A. Korde, ACAIJ, 16, No. 7, 277–287 (2016).

    Google Scholar 

  3. D. Bishara, Neuropsych Dis. Treat., 6, 561–572 (2010).

    Article  Google Scholar 

  4. H. A. Richard and C. C. Pamela, Lippincott Illustrated Reviews: Pharmacology, Neuroleptics, 4th ed., Wolters Kluwer (India) Pvt. Ltd., New Delhi, 156 (2009).

  5. R. S. Satoskar, N. N. Rege, and S. D. Bhandarkar, Pharmacology and Pharmacotherapeutics, Psychopharmacology, 23rd ed., Popular Prakashan, Mumbai, 202 (2013).

  6. S. M. Hoy, L. J. Scott, and G. M. Keating, Sci. World J., 24, No. 3, 227–244 (2010).

    Google Scholar 

  7. L. Citrome, Int. J. Clin. Practice, 64, No. 2, 216–239 (2010).

    Article  Google Scholar 

  8. R. K. Trivedi. R. Jupudi, M. C. Patel, D. R. Trivedi, and H. A. Jogia, Res. Rev. J. Pharm. Pharm. Sci., 2, 37–41 (2013).

    Google Scholar 

  9. D. Injavarapu and U. P. Panigrahi, Int. J. Pharm. Res. BioSci., 3, No. 2, 106–125 (2014).

    Google Scholar 

  10. V. V. Nishath and B. M. Gurupadayaa, Int. J. Eng. Res. Technol., 8, No. 12, 120–139 (2019).

    Google Scholar 

  11. U. Korrapati and R. Chintala, Chem. Sci. Trans., 3, No. 3, 1156–1162 (2014).

    Google Scholar 

  12. S. S. Panda, J. Rath, and V. V. R. K. Bera, Anal. Chem. Lett., 8, No. 4, 510–518 (2018).

    Article  Google Scholar 

  13. S. A. Jadav, S. B. Landge, P. M. Choudhari, P. V. Solanki, S. R. Bembalkar, and V. T. Mathad, Chromatogr. Res. Int., 2011, 1–10 (2011).

    Google Scholar 

  14. K. Dadare, N. C. Khatri, and P. Mayank, J. Chem. Pharm. Res., 4, No. 6, 3154–3157 (2012).

    Google Scholar 

  15. A. S. Manjula and T. K. Ravi, Am. J. Pharm. Tech. Res., 2, No. 3, 616–626 (2012).

    Google Scholar 

  16. M. Farooqui, R. Z. Ahmed, J. N. Sangshetti, Z. Zaheer, A. Wahab, M. Deshpande, S. Bhojane, and S. R. Baig, Indo Am. J. Pharm. Res., 3, 3175–1383 (2013).

    Google Scholar 

  17. S. Kancharla, G. S. Pavan, N. D. Paladugu, S. Bonthu, and D. Poloju, Int. J. Biol. Pharm. Res., 4, 412–416 (2013).

    Google Scholar 

  18. K. Umamahesswar, G. Ramu, and C. Rambabu, Chem. Sci. Trans., 2, No. 1, 41–46 (2013).

    Article  Google Scholar 

  19. K. N. Rao, S. Ganapathy, and A. L. Rao, Rasayan. J. Chem., 6, No. 1, 34–38 (2013).

    Google Scholar 

  20. H. Boga and A. Patnaik, Int. J. Innov. Pharm. Sci. Res., 2, No. 11, 2709–2718 (2014).

    Google Scholar 

  21. S. Rudragangaiah, R. G. Bhatt, and S. B. B. Kotappa, Indian J. Pharm. Educ. Res., 53, No. 4, 691–698 (2019).

    Article  Google Scholar 

  22. K. H. Bindu, I. U. Reddy, Y. Anjaneyelu, and M. V. Suryanarayana, J. Chrom. Sci., 50, No. 4, 368–372 (2012).

    Article  Google Scholar 

  23. K. H. Bindu, N. H. Dhekale, M. V. Suryanarayana, and Y. Anjaneyuly, J. Chromatogr. Relat. Technol., 35, No. 4, 533–546 (2012).

    Article  Google Scholar 

  24. R. K. Trivedi, P. Jain, M. C. Patel, P. M. Chatrabhji, and D. R. Trivedi, J. Appl. Pharm. Sci., 3, No. 7, 87–92 (2013).

    Google Scholar 

  25. R. B. Patel, M. R. Patel, K. K. Bhatt, and B. G. Patel, Anal. Methods, 2, 525–531 (2010).

    Article  Google Scholar 

  26. S. M. Pawara and S. R. Dhaneswar, J. Pharm. Biomed. Sci., 16, No. 15, 1–5 (2012).

    Google Scholar 

  27. M. Z. Bocato, R. A. Simoes, L. A. Calixto, C. M. de Gaitani, M. T. Pupo, and A. R. de Oliveria, Anal. Chim. Acta, 742, 80–89 (2012).

    Article  Google Scholar 

  28. H. Chen, L. Zhao, G. Li, D. Leng, P. Ma, L. Tong, and T. Zhang, Asian J. Pharm. Sci., 9, 286–292 (2014).

    Article  Google Scholar 

  29. Md. S. Uddin, A. A. Mamun, T. Tasnu, and Md. Asaduzaaman, J. Chem. Pharm. Res., 7, No. 9, 180–185 (2015).

    Google Scholar 

  30. J. Patel, G. Kevin, A. Patel. M. Raval, and N. Sheth, Pharm. Method., 2, No. 1, 36–41 (2011).

    Article  Google Scholar 

  31. Saranjit Singh and Sanjay Garg, Pharma Times, August 99, 15–20 (1999).

  32. S. Aashigari, G. G. Ramya, S. Sneha, U. Vykuntam, and N. R. Potnuri, World J. Pharm. Res., 8, No. 1, 479–492 (2019).

    Google Scholar 

  33. S. Singh, B. Monika, Guidance on Conduct of Stress Tests to Determine Inherent Stability of Drugs, 24–36 (2000); https://www.semanticscholar.org/paper/Guidance-on-Conduct-of-Stress-Tests-to-Determine-of-Singh-Bakshi/fce4347f5ddbc12ac1f74d9f7e7ae6db3be2336b.

  34. S. Shing, Stability testing during product development in Jain NK Pharmaceutical product development. CBS publisher and distributors, India, 272–293 (2006).

  35. ICH Q1A (R2): Stability Testing of New Drug Substances and Products, Current Step 4 dated February (2003); http://www.ich.org/fileadmin/public_Web_Site/ICH-Products/Guidelines/Quality/Q1A-R2/Step4/Q1A-R2_Guideline pdf.

  36. WHO Technical Report Series, No. 929, 2005, Annex 5, Guidelines for Registration of Fixed-Dose Combination Medicinal Products, Appendix 3, Pharmaceutical Development (or Preformulation) Studies.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Acharjya.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 6, p. 975, November–December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S.K., Acharjya, S.K., Das, P.S. et al. Development and Validation of a First-Derivative Spectrophotometric Method for the Estimation of an Antipsychotic Drug in Pharmaceutical Formulations and Forced Degradation Studies. J Appl Spectrosc 88, 1276–1283 (2022). https://doi.org/10.1007/s10812-022-01309-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01309-5

Keywords

Navigation