Skip to main content
Log in

Use of Atomic Spectroscopy for Measuring Strong Inhomogeneous Magnetic Fields

  • Published:
Journal of Applied Spectroscopy Aims and scope

The selective reflection (SR) spectrum of laser light from the boundary of the surface of the dielectric window of a spectroscopic nanocell with pairs of rubidium atoms is used to measure a magnetic field applied to the nanocell. A method is proposed for calculating the magnetic induction B in the range of 0.1–6.0 kG based on the ratio of the frequency intervals between atomic transitions, which simplifies the determination of B; in particular, there is no need for a reference spectrum at B = 0. A 300-nm column of Rb atom vapor is used to implement the SR process; atomic processes with a sub-Doppler spectral width of 80–90 MHz take place. This leads to frequency separation of transitions in the SR spectrum. The SR spectrum can be analyzed with the aid of a specially created computer program that speeds up the data processing. The small thickness of the vapor column makes it possible to attain high spatial resolution, which is important in the case of inhomogeneous magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Budker, W. Gawlik, D. Kimball, S. R. Rochester, V. V. Yaschuk, and A. Weis, Rev. Mod. Phys., 74, 1153–1201 (2002).

    Article  ADS  Google Scholar 

  2. E. B. Alexandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States, Springer-Verlag, Berlin (1993).

    Book  Google Scholar 

  3. B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A, 84, 063410 (2011).

    Article  ADS  Google Scholar 

  4. M. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, Comput. Phys. Commun., 189, 162–174 (2015).

    Article  ADS  Google Scholar 

  5. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett., 37, 1379–1381 (2012).

    Article  ADS  Google Scholar 

  6. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, Opt. Lett., 37, 3405 (2012).

    Article  ADS  Google Scholar 

  7. S. Scotto, D. Ciampini, C. Rizzo, and E. Arimondo, Phys. Rev. A, 92, 063810 (2015).

    Article  ADS  Google Scholar 

  8. D. J. Whiting, Renju S. Mathew, J. Keaveney, C. S. Adams, and I. G. Hughes, J. Modern. Opt., 65, 713–722 (2018).

    Article  ADS  Google Scholar 

  9. G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, D. Sarkisyan, and M. Auzinsh, Opt. Commun., 284, 4007–4012 (2011).

    Article  ADS  Google Scholar 

  10. A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. Wojciechowski, and W. Gawlik, Opt. Lett., 39, 2270 (2014).

    Article  ADS  Google Scholar 

  11. A. Sargsyan, E. Klinger, A. Amiryan, A. Tonoyan, and D. Sarkisyan, Phys. Lett. A, 390, 127114 (2021).

    Article  Google Scholar 

  12. R. Momier, A. Aleksanyan, E. Gazazyan, A. Papoyan, and C. Leroy, J. Quant. Spectr. Radiat. Transf., 257, 107371 (2020).

    Article  Google Scholar 

  13. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M.Breton, J. Beaubien, and N. Cyr, Phys. Rev. A, 42, 2766–2773 (1990).

    Article  ADS  Google Scholar 

  14. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding LightAtom Interactions, Oxford University Press, ISBN 978-0-19-956512-2 (2010).

    MATH  Google Scholar 

  15. A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Am. B, 34, 776–784 (2017).

    Article  ADS  Google Scholar 

  16. A. Sargsyan, A. Tonoyan, G. Hakhumyan, and D. Sarkisyan, Pis'ma ZhETF, 106, 669–674 (2017).

    Google Scholar 

  17. A. Tonoyan, A. Sargsyan, E. Klinger, G. Hakhumyan, C. Leroy, M. Auzinsh, A. Papoyan, and D. Sarkisyan, EuroPhys. Lett., 121, 53001 (2018).

    Article  ADS  Google Scholar 

  18. G. Nienhuis, F. Schuller, and M. Ducloy, Phys. Rev. A, 38, 5197–5205 (1998).

    Article  ADS  Google Scholar 

  19. A. Weis, V. A. Sautenkov, and T. W. Hansch, Phys. Rev. A, 45, 7991–7996 (1992).

    Article  ADS  Google Scholar 

  20. A. Sargsyan, E. Klinger, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, Pis'ma ZhETF, 104 (4), 222–228 (2016).

    Google Scholar 

  21. A. Sargsyan, A. Papoyan, I. G. Hughes, C. S. Adams, and D. Sarkisyan, Opt. Lett., 42, No. 8, 1476–1479 (2017).

    Article  ADS  Google Scholar 

  22. V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, Rev. Sci. Instrum., 77, 013102 (2006).

    Article  ADS  Google Scholar 

  23. E. Klinger, H. Azizbekyn, A. Sargsyan, C. Leroy, D. Sarkisyan, and A. Papoyan, Appl. Opt., 59, No. 8, 2231–2237 (2020).

    Article  ADS  Google Scholar 

  24. A. Krasteva, P. Gosh, S. Gateva, S. Tsvetkov, D. Sarkisyan, A. Sargsyan, T. Vartanyan, and S. Cartaleva, Phys. Scripta, 95, 015404 (2020).

    Article  ADS  Google Scholar 

  25. R. Momier, A. Papoyan, and C. Leroy, J. Quant. Spectr. Radiat. Transf., 272, 107780 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sarkisyan.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 6, pp. 829–835, November–December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Sarkisyan, A.S., Tonoyan, A. et al. Use of Atomic Spectroscopy for Measuring Strong Inhomogeneous Magnetic Fields. J Appl Spectrosc 88, 1105–1110 (2022). https://doi.org/10.1007/s10812-022-01286-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01286-9

Keywords

Navigation