Skip to main content
Log in

Selective reflection of laser radiation from submicron layers of Rb and Cs atomic vapors: Applications in atomic spectroscopy

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We studied selective reflection (SR) of laser radiation from a window of a nanocell with thickness L ~ λ1,2/2 filled with Rb and Cs atoms, where λ1 = 780 nm and λ2 = 852 nm are the wavelengths resonant with the D2 laser lines for Rb and Cs, respectively. It is demonstrated that the negative derivative of the SR signal profile for L > λ/2 changes to the positive one for L < λ/2. It is shown that the real-time formation of the SR signal profile derivative (SRD) with the spectral width 30–40 MHz and located at the atomic transition is, in particular, a convenient frequency marker of D2 transitions in Rb and Cs. The amplitudes of SRD signals are proportional to the atomic transition probabilities. A comparison with the known saturated absorption (SA) method demonstrated a number of advantages, such as the absence of cross-over resonances in the SRD spectrum, the simplicity of realization, a low required power, etc. An SRD frequency marker also operates in the presence of the Ne buffer gas at a pressure of 6 Torr, which allowed us to determine the Ne–Rb collisional broadening, whereas the SA method is already inapplicable at buffer gas pressures above 0.1 Torr. The realization simplicity makes the SRD method a convenient tool for atomic spectroscopy. Our theoretical model well describes the SRD signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Budker, D. F. Kimball, and D. P. de Mille, Atomic Physics (Oxford Univ. Press, Oxford, 2004).

    Google Scholar 

  2. D. Meschede, Optics, Light, and Lasers (Wiley-VCH, Weinheim, 2007).

    MATH  Google Scholar 

  3. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, Vol. 5 of Springer Series in Chemical Physics (Springer, Berlin, 2004).

    Google Scholar 

  4. D. E. Thornton, G. T. Phillips, and G. P. Perram, Opt. Commun. 284, 2890 (2011).

    Article  ADS  Google Scholar 

  5. A. Sargsyan, A. Amiryan, S. Kartaleva, and D. Sarkisyan, J. Exp. Theor. Phys. 125, 43 (2017).

    Article  ADS  Google Scholar 

  6. J. Keaveney, A. Sargsyan, U. Krohn, et al., Phys. Rev. Lett. 108, 173601 (2012).

    Article  ADS  Google Scholar 

  7. A. Sargsyan, G. Hakhumyan, R. Mirzoyan, and D. Sarkisyan, JETP Lett. 98, 441 (2013).

    Article  ADS  Google Scholar 

  8. A. Sargsyan, E. Klinger, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, JETP Lett. 104, 224 (2016).

    Article  ADS  Google Scholar 

  9. G. Dutier, A. Yarovitski, S. Saltiel, et al., Europhys. Lett. 63, 35 (2003).

    Article  ADS  Google Scholar 

  10. T. A. Vartanyan and D. L. Lin, Phys. Rev. A 51, 1959 (1995).

    Article  ADS  Google Scholar 

  11. G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, J. Opt. Soc. Am. B 20, 793 (2003).

    Article  ADS  Google Scholar 

  12. A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Am. B 34, 776 (2017).

    Article  ADS  Google Scholar 

  13. A. Banerjee and V. Natarajan, Opt. Lett. 28, 1912 (2003).

    Article  ADS  Google Scholar 

  14. A. Sargsyan, A. Tonoyan, R. Mirzoyan, et al., Opt. Lett. 39, 2270 (2014).

    Article  ADS  Google Scholar 

  15. G. Hakhumyan, A. Sargsyan, C. Leroy, et al., Opt. Express 18, 14577 (2010).

    Article  ADS  Google Scholar 

  16. W. Happer, Rev. Mod. Phys. 44, 169 (1972).

    Article  ADS  Google Scholar 

  17. A. Sargsyan, B. Glushko, and D. Sarkisyan, J. Exp. Theor. Phys. 120, 579 (2015).

    Article  ADS  Google Scholar 

  18. K. A. Whittaker, J. Keaveney, I. G. Hughes, et al., Phys. Rev. Lett. 112, 253201 (2014).

    Article  ADS  Google Scholar 

  19. D. Bloch and M. Ducloy, Adv. At. Mol. Opt. Phys. 50, 91 (2005).

    Article  ADS  Google Scholar 

  20. M. Fichet, G. Dutier, A. Yarovitsky, et al., Europhys. Lett. 77, 54001 (2007).

    Article  ADS  Google Scholar 

  21. A. Sargsyan, A. Papoyan, I. G. Hughes, et al., Opt. Lett. 42, 1476 (2017).

    Article  ADS  Google Scholar 

  22. K. A. Whittaker, J. Keaveney, I. G. Hughes, et al., J. Phys.: Conf. Ser. 635, 122006 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sarkisyan.

Additional information

Original Russian Text © E. Klinger, A. Sargsyan, C. Leroy, D. Sarkisyan, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 4, pp. 641–649.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinger, E., Sargsyan, A., Leroy, C. et al. Selective reflection of laser radiation from submicron layers of Rb and Cs atomic vapors: Applications in atomic spectroscopy. J. Exp. Theor. Phys. 125, 543–550 (2017). https://doi.org/10.1134/S1063776117090151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117090151

Navigation