Skip to main content

Advertisement

Log in

Luminescence Investigations of the Effect of the Structure of the Molecules on their Stability during Interaction with Electrons in the Gas Phase

  • Published:
Journal of Applied Spectroscopy Aims and scope

By luminescence spectroscopy of the decomposition products during excitation by monochromatic electrons with various energies in the gas phase it was shown that the investigated electroactive molecules with approximately the same dimensions and different chemical structure have very different stability during interaction with electrons. Luminescence from hydrogen, С2, and СН and also from СО, CN, I, Al, and Ir in molecules containing these elements or groups is observed in all the molecules. Luminescence from the decomposed molecules is observed at electron energies of ~40–50 eV (for the most typical components such as hydrogen in carbazole and metal in Al2O3). This indicates that the luminescence of the fragments results from their excitation by electrons. The amount and the luminescence intensity of the decomposition products increase with increase of temperature and electron energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Kukhta, J. Appl. Spectrosc., 70, 165–194 (2003).

    Article  Google Scholar 

  2. H. S. Nalwa (Ed.), Handbook of Organic Electronics and Photonics, 3-Volume Set, Am. Sci. Publ. (2008).

  3. J. Hasted, Physics of Atomic Collisions [Russian translation], Mir, Moscow (1965).

  4. A. V. Kukhta, J. Appl. Spectrosc., 73, 879–885 (2006).

    Article  ADS  Google Scholar 

  5. M. Tanaka, R. Nagata, H. Nakanotani, and C. Adachi, Commun. Mater., 1, 18 (2020).

    Article  Google Scholar 

  6. A. V. Kukhta, I. N. Kukhta, N. A. Kukhta, O. L. Neyra, and E. Meza, J. Phys., B41, 205701 (2008).

    ADS  Google Scholar 

  7. L. G. Romanova, A. V. Kukhta, A. N. Zavilopulo, A. S. Agafonova, and O. B. Shpenik, Int. J. Mass Spectrom., 279, 10–14 (2009).

    Article  Google Scholar 

  8. L. G. Romanova, A. N. Zavilopulo, O. B. Shpenik, A. V. Kukhto, and A. S. Agafonova, J. Appl. Spectrosc., 75, 505–513 (2008).

    Article  ADS  Google Scholar 

  9. A. S. Pshennichnyuk, N. L. Asfandiarov, and A. V. Kukhto, Khim. Fiz., 26, 5–13 (2007).

    Google Scholar 

  10. A. V. Kukhta, D. V. Ritchik, N. L. Asfandiarov, V. S. Fal’ko, V. G. Lukin, and S. A. Pshenichnyuk, Int. J. Mass Spectrom., 230, No. 1, 41–44 (2003).

    Article  Google Scholar 

  11. A. T. Lebedev, Mass Spectrometry in Organic Chemistry [in Russian], Tekhnosfera, Moscow (2015).

  12. I. Ambrush, Usp. Khim., 26, 345–361 (1957).

    Google Scholar 

  13. D. I. Slovetskii, Mechanisms of Chemical Reactions in Nonequilibrium Plasma [in Russian], Nauka, Moscoaw (1980).

  14. V. K. Milinchuk and V. I. Tupikov (Eds.), Radiation Resistance of Organic Materials [in Russian], Énergoatomizdat, Moscow (1986).

  15. V. V. Gruzinskii, L. A. Stratskevich, and P. M. Shishlo, Izv. Akad. Nauk SSSR, Ser. Fiz., 42, 370–375 (1978).

  16. N. A. Borisevich, S. M. Kazakov, É. É. Kolesnik, A. V. Kukhto, A. I. Mit’kovets, D. V. Murtazatomiliev, and O. V. Khristoforov, J. Appl. Spectrosc., 68, 447–454 (2001).

    Article  Google Scholar 

  17. N. A. Borisevich, S. M. Kazakov, A. V. Kukhto, D. V. Murtazaliev, and O. V. Khristoforov, J. Appl. Spectrosc., 69, 190–196 (2002).

    Article  Google Scholar 

  18. N. A. Borisevich, S. M. Kazakov, É. É. Kolesnik, A. V. Kukhto, A. I. Mit’kovets, D. V. Murtazaliev, T. F. Raichenok, and O. V. Khristoforov, J. Appl. Spectrosc., 68, 871–876 (2001).

    Article  Google Scholar 

  19. V. A. Andreev, A. L. Ivanov, S. M. Kazakov, A. V. Kukhta, D. V. Murtazaliev, and G. M. Sorokin, Proc. SPIE, 5483, 157–160 (2004).

    Article  ADS  Google Scholar 

  20. S. M. Kazakov, A. I. Korotkov, and O. B. Shpenik, Zh. Éksp. Teor. Fiz., 78, 1687–1695 (1980).

    Google Scholar 

  21. N. A. Borisevich, Excited States of Complex Molecules in the Gas Phase [in Russian], Nauka i Tekhnika, Minsk (1967).

  22. R. Pearce and A. Heydon, Identification of Molecular Spectra [Russian translation], Inostr. Lit., Moscow (1949).

  23. A. N. Zaidel’, V. K. Prokof’ev, S. M. Raiskii, V. A. Slavnyi, and E. Ya. Shreider, Tables of Spectral Lines [in Russian], Nauka, Moscow (1969).

  24. N. A. Borisevich, S. M. Kazakov, A. V. Kukhto, D. V. Murtazaliev, O. V. Khristoforov, B. Ya. Artyukhov, and A. L. Ivanov, J. Appl. Spectrosc., 71, 681–685 (2004).

  25. T.-S. Kim, D.-H. Kim, H.-J. Kim, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, and T. Mitani, Sci. Technol. Adv. Mater., 5, No. 3, 331–337 (2004).

    Article  Google Scholar 

  26. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 75, 4–6 (1999).

    Article  ADS  Google Scholar 

  27. A. Kramida, Yu. Ralchenko, J. Reader, and N. A. Team, NIST Atomic Spectra Database (ver. 5.8), [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kukhta.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 4, pp. 647–652, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukhta, A.V., Neyra, O.L., Mitriukhin, L.K. et al. Luminescence Investigations of the Effect of the Structure of the Molecules on their Stability during Interaction with Electrons in the Gas Phase. J Appl Spectrosc 88, 825–830 (2021). https://doi.org/10.1007/s10812-021-01246-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01246-9

Keywords

Navigation