Skip to main content
Log in

Chemical Transformations of Flax Shive Lignin by the Action of Polysaccharide Fermentation Products

  • Published:
Journal of Applied Spectroscopy Aims and scope

Current problems involving the use of flax product waste for obtaining products utilized for the production of cosmetics with sunscreen and antioxidant properties were examined. Ethanol lignin was obtained from flax shives as well as from raw materials subjected to alkaline pulping or biochemical modification. The bioprocessing included a stage of enzymatic degradation of the noncellulose polysaccharides to give aldoses and a stage of isothermal aging at 95°C. Chemical transformations in the polymer were studied by Fourier-transform infrared spectroscopy (FTIR) with resolution of the spectral curve into elementary vibrational bands of the main atomic groups. The spectra were analyzed using the C–C-stretching vibrational band of the aromatic ring at 1510 cm–1 as the internal standard. The enhanced absorption of the hydroxyaryl groups in the spectra of hydrolyzed lignin corresponds to the increase in intensity of the C=C-bond stretching and deformation vibrational bands. The increase in the auxochromic effect of the double bonds adjacent to the aromatic ring is seen in the increase in the absorption in the near-ultraviolet and visible light ranges. The biochemical preparation of the raw material led to disappearance of the IR bands for the double bonds in the carbonyl and alkene groups accompanied by a 1.5–2-fold enhancement of the absorption of alkyl hydroxyl groups and a 3–4-fold enhancement of the absorption of the hydroxyl group in the hydroxyaryl units. These results are consistent with the analytical data obtained upon biomodified preparation by the differential UV spectroscopic method and indicate greater photostabilizing capacity of lignin combined with absolute transparency in the visible range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Galkin and J. S. Samec, ChemSusChem., 9, No. 13, 1544–1558 (2016); https://doi.org/10.1002/cssc.201500237.

    Article  Google Scholar 

  2. W. Schtyser, T. Renders, S. Van den Bosch, S. F. Koelewijn, G. T. Beckham, and B. F. Sels, Chem. Soc. Rev. 47, No. 3, 852–908 (2018); https://doi.org/10.1039/c7cs00566k.

    Article  Google Scholar 

  3. T. I. Korányi, B. Fridrich, A. Pineda, and K. Barta, Molecules, 25, No. 12, 2815 (2020); https://doi.org/10.3390/molecules25122815.

    Article  Google Scholar 

  4. L. Cao, I. K. M. Yu, Y. Liu, X. Ruan, D. C. W. Tsang, A. J. Hunt, Y. S. Ok, H. Song, and S. Zhang, Bioresources Technol., 269, 465–475 (2018); https://doi.org/10.1016/j.biotech.2018.08.065.

    Article  Google Scholar 

  5. S. S. Wong, R. Shu, J. Zhang, H. Liu, and N. Yan, Chem. Soc. Rev., 49, No. 15, 5510–5560 (2020); https://doi.org/10.1039/d0cs00134a.

    Article  Google Scholar 

  6. R. Zhang, C. H. Zhao, H. C. Chang, M. Z. Chai, B. Z. Li, and Y. J. Yuan, Eng. Life Sci., 19, No. 6, 463–470 (2019); https://doi.org/10.1002/elsc.201800133.

    Article  Google Scholar 

  7. X. Liang, Q. Hu, X. Wang, L. Li, Y. Dong, C. Sun, C. Hu, and X. Gu, Polymers, 12, No. 9, 2123 (2020); https://doi.org/10.3390/polym12092123.

    Article  Google Scholar 

  8. S. Nikafshar, J. Wang, K. Dunne, P. Sangthonganotai, and M. Nejad, ChemSusChem., 14, 1–13 (2021); https://doi.org/10.1002/cssc.202002729.

    Article  Google Scholar 

  9. Q. Tang, Y. Qian, D. Yang, X. Qiu, Y. Qin, and M. Zhou, Polymers, 12, No. 11, 2471 (2020); https://doi.org/10.3390/polym12112471.

    Article  Google Scholar 

  10. T. J. Szalaty, L. Klapiszewsk, and T. Jesionowski, J. Mol. Liq., 301, 112417 (2020); https://doi.org/10.1016/j.molliq.2019.112417.

    Article  Google Scholar 

  11. H. Li, Y. Deng, J. Liang, Y. Dai, B. Li, Y. Ren, X. Qiu, and C. Li, Bioresources, 11, 3073–3083 (2016); https://doi.org/10.15376/biores.11.2.30733083.

    Article  Google Scholar 

  12. M. P. Vinardell and M. Mityans, Int. J. Mol. Sci., 18, 1219 (2017); https://doi.org/10.3390/ijms18061219.

    Article  Google Scholar 

  13. P. Morganti and M.B. Coltelli, Cosmetics, 6, No. 1 (2019); https://doi.org/10.3390/cosmetics6010010.

  14. V. Martinez, M. Mitjans, and M. P. Binardelli, Currr. Organ. Chem., 16, 1863–1870 (2012), https://doi.org/10.2174/138527212802651223.

    Article  Google Scholar 

  15. C. Corinaldesi, F. Marcellini, E. Nepote, E. Damiani, and R. Danovaro, Sci. Total. Environ., 637–638, 1279–1285 (2018); https://doi.org/10.1016/j.scitotenv.2018.05.108.

    Article  ADS  Google Scholar 

  16. L. Ouchene, I. V. Litvinov, and E. Netchiporouk, J. Cutan. Med. Surg., 23, 648–649 (2019); https://doi.org/10.1177/1203475419871592.

    Article  Google Scholar 

  17. A. Levine, Mar. Policy, 117, 103875 (2020); https://doi.org/10.1016/j.marpol.2020.103875.

    Article  Google Scholar 

  18. O. Gordobil, P. Olaizola, J. M. Banales, and J. Labidi, Molecules, 25, No. 5, 1131 (2020); https://doi.org/10.3390/molecules25051131.

    Article  Google Scholar 

  19. H. He, A. Li, S. Li, J. Tang, L. Li, and L. Xiong, Biomed. Pharmac., 134, 111161 (2021); https://doi.org/10.1016/j.biopha.2020.111161.

    Article  Google Scholar 

  20. D. Piccinino, E. Capecchi, E. Tomaino, S. Gabellone, V. Gigli, D. Avitabile, and R. Saladino, Antioxidants, 10, No. 2, 274 (2021); https://doi.org/10.3390/antiox10020274.

    Article  Google Scholar 

  21. M. E. Vallejos, F. E. Felissia, A. A. S. Curvelo, M. D. Zambon, L. Ramos, and M. C. Area, Bioresources, 1158–1171 (2011); https://doi.org/10.15376/biores.6.2.11581171.

  22. S. Laurichesse and L. Averous, Prog. Polym. Sci., 39, No. 7, 1266–1290 (2014), https://doi.org/10.1016/j.progjoplymsci.2013.11.004.

    Article  Google Scholar 

  23. Y. Qian, X. Q. Qiu, and S. P. Zhu, Green Chem., 17, No. 1, 320–324 (2015); https://doi.org/10.1039/C4FC01333F.

    Article  Google Scholar 

  24. A. Duval and M. Lawoko, React. Funct. Polym., 85, 78–96 (2014); https://doi.org/10.1016/j.reactfunctpolym.2014.09.017.

    Article  Google Scholar 

  25. S. R. Yearla and K. Padmasree, J. Exp. Nanosci., 10, No. 18, 1–14 (2015); https://doi.org/10.1080/17458080.2015.1055842.

    Article  Google Scholar 

  26. D. Tian, J. Hu, J. Bao, B. P. Chandra, J. N. Saddler, and C. Lu, Biotechnol. Biofuels, 10, 192 (2017); https://doi.org/10.1186/s130680170876z.

    Article  Google Scholar 

  27. J. Wang, Y. Deng, Y. Qian, X. Qiu, Y. Ren, and D. Yang, Green Chem., 18, 695–699 (2016); https://doi.org/10.1039/C5GC02180D.

    Article  Google Scholar 

  28. H. Zhang, X. Liu, S. Fu, and Y. Chen, Int. J. Biol. Macromol., 133, 86–92 (2019); https://doi.org/10.1016/j.ijbiomac.2019.04.092.

    Article  Google Scholar 

  29. S. C. Lee, T. M. T. Tran, J. W. Choi, and K. Won, Int. J. Biol. Macromol., 122, 549–554 (2019); https://doi.org/10.1016/j.ijbiomac.2018.10.184.

    Article  Google Scholar 

  30. O. Lepilova, G. Spigno, S. Aleeva, and S. Koksharov, Eurasian Chem. Technol. J., 19, No. 1, 31–40 (2017); https://doi.org/10.18321/ectj500.

    Article  Google Scholar 

  31. O. V. Lepilova, S. V. Aleeva, and S. A. Koksharov, Russ. J. Org. Chem., 48, No. 1, 83–88 (2012); https://doi.org/10.1134/s1070428012010125.

    Article  Google Scholar 

  32. S. Koksharov, S. Aleeva, and O. Lepilova, Autex Res., 15, No. 3, 215–225 (2015); https://doi.org/10.1515/aut20150003.

    Article  Google Scholar 

  33. W. J. J. Huijgen, A. T. Smit, P. J. de Wild, and H. den Uil, Bioresource Technol., 114, 389–398 (2012); https://doi.org/10.1016/j.biortech.2012.02.143.

    Article  Google Scholar 

  34. S. V. Aleeva and S. A. Koksharov, Russ. J. Gen. Chem., 82, No. 13, 2279–2293 (2012); https://doi.org/10.1134//S1070363212130154.

    Article  Google Scholar 

  35. E. Pretsch, P. Buhlmann, and M. Badertscher, Structure Determination of Organic Compounds, Springer-Verlag, Berlin–Heidelberg (2009).

    Google Scholar 

  36. N. G. Bazarnovaya (Ed.), Research Methods for Wood and Its Derivatives [in Russian], Barnaul, Altai State University (2002).

    Google Scholar 

  37. O. Yu. Derkacheva, J. Appl. Spectrosc., 80, No. 5, 670–676 (2013); https://doi.org/10.1007/s108120139825.

    Article  ADS  Google Scholar 

  38. S. V. Aleeva, O. V. Lepilova, and S. A. Koksharov, J. Appl. Spectrosc., 87, No. 5, 779–783 (2020); https://doi.org/10.31857/d0044453720060035.

    Article  ADS  Google Scholar 

  39. M. Khazma, A. Goullieux, R. M. Dheilly, A. Rougier, and M. Quenuedec, Ind. Crop. Prod., 61, 442–452 (2014); https://doi.org/10.1016/j.indcrop.2014.07.041.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Aleeva.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 4, 603–610, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleeva, S.V., Lepilova, O.V. & Koksharov, S.A. Chemical Transformations of Flax Shive Lignin by the Action of Polysaccharide Fermentation Products. J Appl Spectrosc 88, 781–788 (2021). https://doi.org/10.1007/s10812-021-01240-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01240-1

Keywords

Navigation