Skip to main content
Log in

Mid-Infrared Vibrational Spectrum Characterization of the Outer Surface of Candida albicans by Functionally Enhanced Derivative Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The objective of this work was to evaluate the ability of the functionally enhanced derivative spectroscopy (FEDS) algorithm to characterize the surface of microorganisms, namely, Candida albicans, by mid-IR spectroscopy and with the cellulose sensing surface technique. This work is a key stage in the study of cell–cell and cell–surface interactions between microorganisms, including the study of polymicrobial biofilms. Accordingly, C. albicans was selected as a microorganism model due to its importance in medical science and human health. Spectra were recorded in triplicate from 4000 to 500 cm–1 by the ATR technique. It was concluded that the FEDS transform of the mid-IR spectrum is a powerful analytical tool to improve spectral analysis by IR spectroscopy. In the particular case of C. albicans biofilms, it was observed that by FEDS, it is possible to deconvolute signals and achieve improved signal differentiation. For interpretation, serine, threonine, glycine, alanine, glutamic acid, proline, and N-acetyl-D-glucosamine units were taken as molecular models since these molecules have been described as the main components in the cell wall of C. albicans. In this way, it was found that the vibrational spectrum of C. albicans biofilms can be understood considering only the main components of the cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Hornby, E. C. Jensen, A. D. Lisec, J. J. Tasto, B. Jahnke, R. Shoemaker, P. Dussault, and K. W. Nickerson, Appl. Environ. Microbiol., 67, 2982–2992 (2001).

    Article  Google Scholar 

  2. H. H. Tuson and D. B. Weibel, Soft Matter., 9, 4368–4380 (2013).

    Article  ADS  Google Scholar 

  3. C. R. Arciola, D. Campoccia, G. D. Ehrlich, and L. Montanaro, Adv. Exp. Med. Biol., 830, 29–46 (2015).

    Article  Google Scholar 

  4. A. Kumar, A. Alam, M. Rani, N. Z. Ehtesham, and S. E. Hasnain, Int. J. Med. Microbiol., 307, 481–489 (2017).

    Article  Google Scholar 

  5. A. Elbourne, J. Chapman, A. Gelmi, D. Cozzolino, R. J. Crawford, and V. K. Truong. J. Colloid Interf. Sci., 546, 192–210 (2019).

    Article  ADS  Google Scholar 

  6. A. Alvarez-Ordoñez, D. Mouwen, M. Lopez, and M. Prieto. J. Microbiol. Methods, 84, 369–378 (2006).

    Article  Google Scholar 

  7. J. Ojeda and M. Dittrich, Microbiol Systems Biology: Methods and Protocols, Methods in Molecular Biology, Springer Science (2012).

  8. J. Prakash, S. Kar, C. Lin, C. Y. Chen, C. F. Chang, J. S. Jean, and T. R. Kulp, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 116, 478–484 (2013).

    Article  ADS  Google Scholar 

  9. M. Dadd, D. Sharp, A. Pettman, and C. Knowles, J. Microbiol. Methods., 41, 69–75 (2000).

    Google Scholar 

  10. W. Huang, D. Hopper, R. Goodacre, M. Beckmann, A. Singer, and J. Draper, J. Microbiol. Methods, 67, 273–280 (2006).

    Google Scholar 

  11. Z. Khatoon, C. McTiernan, E. Suuronen, T. F. Mah, and E. Alarcon, Heliyon, 4, e01067 (2018).

  12. D. Singhalage, G. Seneviratne, S. Madawala, and I. Manawasinghe, Ceylon J. Sci., 47, 77–83 (2018).

    Article  Google Scholar 

  13. W. Friesen and K. Michaelian, Appl. Spectrosc., 45, 50–56 (1991).

    Article  ADS  Google Scholar 

  14. T. Vazhnova and D. Lukyanov, Anal. Chem., 85, 11291–11296 (2013).

    Article  Google Scholar 

  15. M. Palencia, J. Adv. Res., 14, 53–62 (2018).

    Google Scholar 

  16. M. Palencia, T. Lerma, and N. Afanasjeva, Eur. Polym. J., 115, 212–220 (2019).

    Article  Google Scholar 

  17. Y. Guan, C. J. Wurrey, and G. J. Thomas, Biophys. J., 66, 225–235 (1994).

    Article  Google Scholar 

  18. Y. Guan and G. J. Thomas, Biopolymers, 39, 813–835 (1996).

    Article  Google Scholar 

  19. W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. Myneni, Langmuir, 20, 11433–11442 (2004).

    Article  Google Scholar 

  20. A. Barth, Biochim. Biophys. Acta, 1767, 1073–1101 (2007).

    Article  Google Scholar 

  21. S. Parker, Chem. Phys., 424, 75–79 (2013).

    Article  Google Scholar 

  22. T. A. Lerma, S. Collazos, and A. Cordoba, J. Sci. Technol. Appl., 1, 30–38 (2016).

    Article  Google Scholar 

  23. M. Palencia, T. A. Lerma, and A. Cordoba, J. Sci. Technol. Appl., 1, 39–52 (2016).

    Article  Google Scholar 

  24. N. Arbelaez, T. A. Lerma, and A. Cordoba, J. Sci. Technol. Appl., 2, 75–83 (2017).

    Article  Google Scholar 

  25. W. Volmer, D. Blanot, and M. A. De Pedro, FEMS Microbiol. Rev., 32, 149–167 (2008).

    Article  Google Scholar 

  26. W. Lajean, J. L. López–Ribot, M. Casanova, D. Gozalbo, and J. P. Martínez, Microbiol. Mol. Biol. Rev., 62, 130–180 (1998).

  27. E. Reyna-Beltran, C. I. Bazan, M. Iranzo, S. Mormeneo, and J. P. Luna-Arias, The Cell Wall of Candida albicans: A Proteomics View, (2019). https://doi.org/10.5772/intechopen.82348

  28. J. Ruiz-Herrera, S. Mormeneo, P. Vanaclocha, J. Font-de-Mora, M. Iranzo, I. Puertes, and R. Sentandreu, Microbiol., 140, 1513–1523 (1994).

    Article  Google Scholar 

  29. W. Nsangou, Comput. Theor. Chem., 966, 364–374 (2011).

    Article  Google Scholar 

  30. E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, K. Baranska, and K. Malek, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 185, 317–335 (2017).

    Article  ADS  Google Scholar 

  31. H. A. Wells and R. H. Atalla, J. Mol. Struct., 224, 385–424 (1990).

    Google Scholar 

  32. M. W. Ellzy, Computational and Experimental Studies Using Absorption Spectroscopy and Vibrational Circular Dischroism. Thesis, Drexel University, 1–333 (2006).

  33. I. Nieduszynsky and R. H. Marchessault, Can. J. Chem., 50, 2130–2138 (1972).

    Article  Google Scholar 

  34. A. Kovacs, B. Nyerges, and V. Izvekov, J. Phys. Chem., 112, 5728–5735 (2008).

    Google Scholar 

  35. M. E. Mohamed and A. M. A. Mohammed, Int. Lett. Chem., Phys. Astron., 10, 1–17 (2013).

  36. L. E. Fernández, G. E. Delgado, L. V. Maturano, R. M. Tótaro, and E. L. Varetti, J. Mol. Struct., 1168, 84–91 (2018).

    Google Scholar 

  37. I. Adt, D. Toubas, J. M. Pinon, M. Manfait, and G. D. Sockalingum, Arch. Microbiol., 185, 277–285 (2006).

    Article  Google Scholar 

  38. R. P. Hirschmann, R. N. Kniseley, and A. Fassel, Spectrochim. Acta, 21, 2125–2133 (1965).

    Article  ADS  Google Scholar 

  39. C. V. Stephenson, W. C. Coburn, and W. S. Wilcox, Spectrochim. Acta, 17, 933–946 (1961).

    Article  ADS  Google Scholar 

  40. F. O. Libnau, O. M. Kvalheim, A. A. Christy, and J. Toft, Vibr. Spectrosc., 7, 243–254 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Palencia.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 1, p. 167, January–February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palencia, S.L., García, A. & Palencia, M. Mid-Infrared Vibrational Spectrum Characterization of the Outer Surface of Candida albicans by Functionally Enhanced Derivative Spectroscopy. J Appl Spectrosc 88, 166–180 (2021). https://doi.org/10.1007/s10812-021-01155-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01155-x

Keywords

Navigation