Skip to main content
Log in

Impruved Prediction of Soluble Solid Content of Apple Using a Combination of Spectral and Textural Features of Hyperspectral Images

  • Published:
Journal of Applied Spectroscopy Aims and scope

We established prediction models based on the combination of spectral and different advanced image features to improve the prediction accuracy of solid-soluble content (SSC) of apple. Eight optimal wavelengths were selected using a new variable selection method called variable combination population analysis (VCPA). Image textural features of the first three principal component score images were obtained using a gray level co-occurrence matrix (GLCM) and a local binary pattern (LBP). Next, a random frog algorithm was developed to select optimal textural features for further analysis. A support vector regression (SVR) model based on spectral and different textural features was developed to predict the SSC of the apple. The model based on eight optimal wavelengths and nine optimal GLCM features of principal component images yielded the best result with the determination coefficient for prediction (Rp2) of 0.9193, root mean square error for prediction (RMSEP) of 0.2955, and the ratio of the standard deviation of the prediction set to the root mean square error of prediction (RPD) with a value of 3.50. These results revealed that the spectral combined with optimal GLCM features from principal component images coupled with the SVR model has the potential for prediction of the SSC of apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Huang, L. Chen, J. Li, and Z. Guo, Determination of Soluble Solids Content in Apple using Hyperspectral Imaging and Variable Selection Algorithms, Conference in Kansas City, Missouri, July 21–24, 2013 (2013), doi: https://doi.org/10.13031/aim.20131620975.

  2. J. Dong and W. Guo, Food Anal. Methods, 8, No. 10, 2635–2646 (2015).

    Article  Google Scholar 

  3. F. Mendoza, R. Lu, D. Ariana, H. Cen, and B. Bailey, Postharvest. Biol. Technol., 62, No. 2, 149–160 (2011).

    Google Scholar 

  4. J. Dong, W. Guo, Z. Wang, D. Liu, and F. Zhao, Food Anal. Methods, 9, No. 5 (2016).

  5. D. J. Lee, R. Schoenberger, J. Archibald, and S. McCollum, J. Food Eng., 86, 388–398 (2008).

    Article  Google Scholar 

  6. S. N. Jha, K. Narsaiah, A. D. Sharma, M. Singh, S. Bansal, and R. Kumar, JFST, 47, No. 1, 1–14 (2010).

    Google Scholar 

  7. L. Yang, F. Yang, and N. Noguchi, IFAC Proc., 18, 14145–14150 (2011).

    Article  Google Scholar 

  8. Z. Xiaobo, Z. Jiewen, H. Xingyi, and L. Yanxiao, Chemometr. Intell. Lab., 87, 69–77 (2007).

    Article  Google Scholar 

  9. H. Zhang, X. Sun, Y. Liu, T. Liu, A. Ouyang, Y. Pan, et al., Trans. Chin. Soc. Agric. Eng., 25, 340–344 (2009).

  10. D. Yang, D. He, A. Lu, D. Ren, and J. Wang, Infrared Phys. Technol., 83, 206–216 (2017).

    Article  ADS  Google Scholar 

  11. M. Huang, Q. Wang, M. Zhang, and Q. Zhu, J. Food Eng., 128, 24–30 (2014).

    Article  Google Scholar 

  12. P. Rajkumar, N. Wang, G. Eimasry, G. S. V. Raghavan, and Y. Gariepy, J. Food Eng., 108, No. 1, 194–200 (2012).

    Article  Google Scholar 

  13. H. Cen, R. Lu, Q. Zhu, and F. Mendoza, Postharvest Biol. Technol., 111, 352–361 (2016).

    Article  Google Scholar 

  14. A. López-Maestresalas, J. C. Keresztes, M. Goodarzi, S. Arazuri, C. Jarén, and W. Saeys, Food Control, 70, 229–241 (2016).

    Article  Google Scholar 

  15. S. Suktanarak and S. Teerachaichayut, J. Food Eng., 215, 97–103 (2017).

    Article  Google Scholar 

  16. T. Guo, M. Huang, Q. Zhu, Y. Guo, and J. Qin, J. Food Eng., 218, 61–68 (2017).

    Article  Google Scholar 

  17. Sh. Fan, B. Zhang, and J. Liu, Postharvest Biol. Technol., 121, 51–61 (2016).

    Article  Google Scholar 

  18. T. Mohammadi-Moghaddam, S. M. A. Razavi, M. Taghizadeh, B. Pradhan, A. Sazgarnia, and A. Shaker-Ardekani, J. Food Meas. Charact. (2018).

    Google Scholar 

  19. D. Liu, H. Pu, D. W. Sun, L. Wang, and X. A. Zeng, Food Chem., 160, 330–337 (2014).

    Article  Google Scholar 

  20. W. Cheng, D. W. Sun, H. Pu, and Y. Liu, LWT-Food Sci. Technol., 72, 322–329 (2016).

    Article  Google Scholar 

  21. J. H. Cheng and D. W. Sun, LWT-Food Sci. Technol., 63, 892–898 (2015).

    Article  Google Scholar 

  22. J. A. Westerhuis, S. D. Jong, and A. K. Smilde, Chemometr. Intell. Lab., 56, No. 1, 13–25 (2001).

    Article  Google Scholar 

  23. D. A. Clausi, Can. J. Remote Sens., 28, 45–62 (2002).

    Article  ADS  Google Scholar 

  24. X. Li, P. Nie, Z. J. Qiu, and Y. He, Expert. Syst. Appl., 38, 11149–11159 (2011).

    Article  Google Scholar 

  25. S. Nigam and A. Khare, Multimed. Tools Appl., 75, 17303–17332 (2016).

    Article  Google Scholar 

  26. T. Tang, L. Dai, and Z. Yin, Abstr. 5th Int. Conf. Mechatronics, Materials, Chemistry and Computer Engineering, 6 (2017)

    Google Scholar 

  27. Y. H. Yun, W. T. Wang, B. C. Deng, G. B. Lai, X. B. Liu, and D. B. Ren, Anal. Chim. Acta, 862, 14–23 (2015).

    Article  Google Scholar 

  28. H. D. Li, Q. S. Xu, and Y. Z. Liang, Anal. Chim. Acta, 740, 20–26 (2012).

    Article  Google Scholar 

  29. Y. H. Yun, H. D. Li, L. R. Leslie, Spectrochim. Acta A, 111, 31–36 (2013).

    Article  ADS  Google Scholar 

  30. U. Thissen, M. Pepers, B. Üstün, W. J. Melssen, and L. M. Buydens, Chemometr. Intell. Lab., 73, No. 2, 169–179 (2004).

    Article  Google Scholar 

  31. S. Fan, W. Huang, and Z. Guo, Food Anal. Methods, 8, No. 8, 1936–1946 (2015).

    Article  Google Scholar 

  32. X. L. Chu, Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications, Beijing, Chemical Industry Press, 86–88 (2011).

    Google Scholar 

  33. V. A. Mcglone and S. Kawano, Postharvest Biol. Technol., 13, No. 2, 131–141 (1998).

    Article  Google Scholar 

  34. R. Lu, Postharvest Biol. Technol., 31, No. 2, 147–157 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Chen.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 6, p. 1024, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, T., Rao, L., Chen, X. et al. Impruved Prediction of Soluble Solid Content of Apple Using a Combination of Spectral and Textural Features of Hyperspectral Images. J Appl Spectrosc 87, 1196–1205 (2021). https://doi.org/10.1007/s10812-021-01129-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01129-z

Keywords

Navigation