Skip to main content
Log in

Frustrated Total Internal Reflection Spectra of Diazoquinone–Novolac Photoresist Films

  • Published:
Journal of Applied Spectroscopy Aims and scope

Radiation-induced effects in thin films of diazoquinone–novolac photoresists on silicon irradiated with high-energy electrons (~5 MeV) were investigated by frustrated total internal reflection (FTIR) IR Fourier spectroscopy. It was found that irradiation with electrons at a dose of more than 3·1015 cm–2 leads to decrease of the integral absorption at wave numbers in the region of 3700–400 cm–1. The intensity of bands due to the –O–H– and particularly aliphatic –C–H– bonds is increased most strongly during electron irradiation. At a dose of Φ = 1·1017 cm–2 the intensity of the bands due to the methylene (–CH2–) and methyl (–CH3) groups is comparable with the noise level. The intensity of the band at ~1600 cm–1, due to the vibrations of the aromatic ring, does not change at radiation doses in the range of 3·1014–1·1017 cm–2. The obtained experimental data indicate strong cross-linking of the polymeric components during irradiation with electrons. It was found that the radiation-induced changes in the FTIR spectra depend on the type of photoresist (FP9120 and S1813 G2 SP15). The experimental relationships of change in the optical characteristics of thin films of photoresists due to electrons are explained in terms of the radiation chemistry of diazoquinone–novolac resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Moreau, Semiconductor Lithography. Principles, Practices, and Materials [Russian translation], Mir, Moscow (1990).

    Google Scholar 

  2. J. Marques-Hueso, R. Abargues, J. L. Valdes, and J. P. Martinez-Pastor, J. Mater. Chem., 20, 7436–7443 (2010).

    Article  Google Scholar 

  3. M. Sharma, A. A. Naik, P. Raghunathan, and S. V. Eswaran, J. Chem. Sci., 124, No. 2, 395–401 (2012).

    Article  Google Scholar 

  4. J. S. Martins, D. G. A. L. Borges, R. C. Machado, A. G. Carpanez, R. M. Grazul, F. Zappa, W. S. Melo, M. L. M. Rocco, R. R. Pinho, and C. R. A. Lima, Europ. Polym. J., 59, 1–7 (2014).

    Article  Google Scholar 

  5. B.-H. Kim, Y. H. Kim, and D. C. Moon, J. Chromatogr. Sci., 51, 161–165 (2013).

    Article  Google Scholar 

  6. Debmalya Roy, P. K. Basu, P. Raghunathan, and S. V. Eswaran, Magn. Res. Chem., 41, 84–90(2003).

    Google Scholar 

  7. J. Bocker, Spektroskopie [Russian translation], Tekhnosfera, Moscow (2009).

    Google Scholar 

  8. D. I. Brinkevich, A. A. Kharchenko, V. S. Prosolovich, V. B. Odzhaev, S. D. Brinkevich, and Yu. N. Yankovski, Mikroélektronika, 48, No. 3, 235–239 (2019).

    Google Scholar 

  9. S. D. Brinkevich, E. V. Grinyuk, D. I. Brinkevich, and V. S. Prosolovich, Khimiya Vysokikh Énergii, 54, No. 5, 377–386 (2020) [S. D. Brinkevich, E. V. Grinyuk, D. I. Brinkevich, and V. S. Prosolovich, High Energy Chem., 54, No. 5, 342–351 (2020)].

  10. E. Pretsch, P. Bullmann, and C. Affolter, Structure Determination of Organic Compounds. Tables of Spectral Data [Russian translation], Mir, Binom, Moscow (2006).

  11. D. I. Brinkevich, U. S. Prasalovich, and Y. M. Yankouski, Zh. Bel. Gos. Un-ta. Fizika, No. 2, 24–34 (2020).

    Google Scholar 

  12. B. N. Tarasevich, IR Spectra of Principal Classes of Organic Compounds. Reference Materials [in Russian], MGU, Moscow (2012).

    Google Scholar 

  13. I. Poljansek, U. Sebenik, and M. Krajnc, J. Appl. Polym. Sci., 99, No. 5, 2016–2028 (2006).

    Article  Google Scholar 

  14. M. V. Belkov, S. D. Brinkevich, S. N. Samovich, I. V. Skornyakov, G. B. Tolstorozhev, and O. I. Shadyro, Zh. Prikl. Spektrosk., 78, No. 6, 851–858 (2011).

    Google Scholar 

  15. G. B. Tolstorozhev, I. V. Skornyakov, M. V. Bel'kov, O. I. Shadyro, S. D. Brinkevich, and S. N. Samovich. Opt. Spektrosc., 113, No. 2, 202–207 (2012).

    Google Scholar 

  16. A. N. Oleshkevich, N. M. Lapchuk, V. B. Odzhaev, I. A. Karpovich, V. S. Prosolovich, D. I. Brinkevich, and S. D. Brinkevich, Mikroélektronika, 49, No. 1, 58–65 (2020).

    Google Scholar 

  17. D. I. Brinkevich, S. D. Brinkevich, N. V. Vabishchevich, V. B. Odzhaev, and V. S. Prosolovich, Mikroélektronika, 43, No. 3, 193–199 (2014).

    Google Scholar 

  18. S. A. Vabishchevich, N. V. Vabishchevich, D. I. Brinkevich, V. S. Prosolovich, and S. D. Brinkevich, Vestn. Polots. Gos. Un-ta, Ser. S. Fundament. Nauki. Fizika, No. 12, 51–57 (2016).

  19. S. N. Gapan’kova, S. D. Brinkevich, I. P. Edimecheva, V. P. Kurchenko, and O. I. Shadyro, Khimiya Vysokikh Énergii, 45, No. 3, 227–232 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Brinkevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 6, pp. 941–948, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brinkevich, S.D., Brinkevich, D.I., Prosolovich, V.S. et al. Frustrated Total Internal Reflection Spectra of Diazoquinone–Novolac Photoresist Films. J Appl Spectrosc 87, 1072–1078 (2021). https://doi.org/10.1007/s10812-021-01111-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01111-9

Keywords

Navigation