Skip to main content
Log in

Quantitative Analysis of Trans Fatty Acids in Cooked Soybean Oil Using Terahertz Spectrum

  • Published:
Journal of Applied Spectroscopy Aims and scope

A method for the quantitative analysis of trans fatty acids (TFAs) in cooked soybean oil using terahertz (THz) spectrum is developed. The THz spectra of three groups of soybean oil samples that were cooked at different temperatures for various times were measured using a terahertz time-domain spectrum system (THz–TDS) with frequency range of 0.2–1.5 THz. A partial least squares (PLS) regression model based on the whole THz spectrum was constructed to predict the TFAs content in the cooked soybean oil samples. To reduce noise and improve the prediction accuracy of the model, a subinterval PLS (sub-PLS) model based on a part of the THz spectrum was constructed. This sub-PLS had high accuracy in predicting the TFAs content in cooked soybean oil samples (R = 0.987 and RMSECV = 0.956).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ascensión, S. Isabel, and C.V. Carmen, J. Chem., 2014, No. 38, 1–8 (2015).

    Article  Google Scholar 

  2. J. M. Cortés, R. Sanchez, and A. Vazquez, J. Agric. Food Chem., 54, No. 19, 6963 (2006).

    Article  Google Scholar 

  3. M. G. Qian, H. Zhang, and K. Z. Jiang, Food Chem., 166, 23–28 (2015).

    Article  Google Scholar 

  4. M. A. Hossain and S. M. Salehuddin, Arab. J. Chem., 5, No. 3, 391–396 (2012).

    Article  Google Scholar 

  5. D. Caroline, T. Angélique, and S. Louise, Food Anal. Methods, 8, No. 6, 1425–1435 (2015).

    Article  Google Scholar 

  6. C. X. Yuan, Y. Y. Xie, and Y. X. Ju, Food Anal. Methods, 10, No. 11, 1–7 (2017).

    Article  ADS  Google Scholar 

  7. Y. Tehseen, D. W. Sun, and J. H. Cheng, Trend. Food Sci. Technol., 62, 177–189 (2017).

    Article  Google Scholar 

  8. A. Ahmet, O. A. Swesi, and B. S. Alhatab, J. Mol. Struct., 1128, 590–605 (2017).

    Article  ADS  Google Scholar 

  9. B. Muik and B. Lendl, Chem. Phys. Lipids, 134, No. 2, 173–182 (2005).

    Article  Google Scholar 

  10. X. P. Fu and Y. B. Ying, Crit. Rev. Food Sci. Nutr., 56, No. 11, 1913–1924 (2016).

    Article  Google Scholar 

  11. H. Azizian and J. K. G. Kramer, J. Am. Oil Chem. Soc., 89, No. 12, 2143–2154 (2012).

    Article  Google Scholar 

  12. H. Zhan, J. Xi, and L. Xiao, Food Control, 67, 114–118 (2016).

    Article  Google Scholar 

  13. J. Li, IEEE Trans. Instrum. Meas., 59, No. 8, 2094–2098 (2010).

    Article  Google Scholar 

  14. F. S. Vieira and C. Pasquini, Anal. Chem.86, No. 8, 3780–3786 (2014).

    Article  Google Scholar 

  15. B. Ferguson and X. C. Zhang, Physics, 1, No. 1, 26–33 (2002).

    Google Scholar 

  16. F. Zhao, S. M. Long, and Y. Zhang, Acta Phys. Sin., 64, No. 2, 24202 (2015).

    Google Scholar 

  17. E. Hérault, F. Garet, and J. L. Coutaz, IEEE Trans. Terahertz Sci. Technol.,6, No. 1, 12–19 (2016).

    Article  ADS  Google Scholar 

  18. J. S. Melinger, N. Laman, and D. Grischkowsky, Appl. Phys. Lett., 93, No. 1, 44 (2008).

    Article  Google Scholar 

  19. M. Y. Liang, J. L. Shen, and G. Q. Wang, J. Phys. D, 41, No. 13, 135306 (2008).

    Article  ADS  Google Scholar 

  20. K. Q. Wang, D. W. Sun, and H. B. Pu, Trends Food Sci. Technol., 67, 93–105 (2017).

    Article  Google Scholar 

  21. F. Y. Lian, D. G. Xu, and Y. Zhang, IEEE Trans. Terahertz Sci. Technol., 7, No. 4, 378–384 (2017).

    Article  ADS  Google Scholar 

  22. H. Y. Ge, Y. J. Jiang, and S. H. Xia, Food Chem., 209, 286–292 (2016).

    Article  Google Scholar 

  23. Y. J. Jiang, H. Y. Ge, and S. H. Xia, Sci. Rep., 6, 21299 (2016).

    Article  ADS  Google Scholar 

  24. I. Pupeza, R. Wilk, and M. Koch, Opt. Express, 15, No.7, 4335–4350 (2007).

    Article  ADS  Google Scholar 

  25. X. L. Zhao and J. S. Li, Int. Photon. Optoelectron. Meet., 276, No. 1, 012234 (2011).

    Google Scholar 

  26. Y. Zhang, X. H. Peng, and X.C. Zhang, Chem. Phys. Lett., 452, No. 1, 59–66 (2008).

    Article  ADS  Google Scholar 

  27. O. O. Olaoluwa, B. Isa, and S. M. Lembe, Sci. Horticult., 199, 229–236 (2016).

    Article  Google Scholar 

  28. D. C. Gu, M. J. Zou, and C. H. Xu, Food Chem., 229, 458–463 (2017).

    Article  Google Scholar 

  29. H. Y. Ge, Y. Y. Jiang, and S. H. Xia, Sensors, 15, No. 6, 12560–12572 (2015).

    Article  Google Scholar 

  30. W. K. Jia, D. A. Zhao, and C. L. Hu, Appl. Intellig., 43, No. 1, 176–191 (2015).

    Article  Google Scholar 

  31. B. M. Nicolai and K. Beullens, J. Lammertyn, Postharvest Biol. Technol., 45, No. 2, 99–118 (2007).

    Article  Google Scholar 

  32. M. Naftaly and R. E. Miles, Proc. IEEE, 95, No. 8, 1658–1665 (2007).

    Article  Google Scholar 

  33. F. Zhang, O. Kambara, and M. Hayashi, RSC Adv., 4, No. 1, 269–278 (2015).

    Article  Google Scholar 

  34. A. I. McIntosh and B. Yang, R. S. Chem. Phys. Lett., 558, No. 2, 104–108 (2013).

    Article  ADS  Google Scholar 

  35. W. Withayachumnankul, B. M. Fischer, and D. Abbott, J. Opt. Soc. Am. B, 25, No. 6, 1059–1072 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 5, p. 837, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, F.Y., Ge, H.Y., Ju, X.J. et al. Quantitative Analysis of Trans Fatty Acids in Cooked Soybean Oil Using Terahertz Spectrum. J Appl Spectrosc 86, 917–924 (2019). https://doi.org/10.1007/s10812-019-00916-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00916-z

Keywords

Navigation