Skip to main content
Log in

Generation of Single Attosecond Pulse by Using Asymmetric Polarization Gating Technology

  • Published:
Journal of Applied Spectroscopy Aims and scope

The generation of high-order harmonics and single attosecond pulses via the asymmetric polarization gating technology has been theoretically investigated. It is shown that when the two circularly polarized laser fields are asymmetric in amplitude and phase, not only can the modulations of the harmonic spectrum be decreased, but also the efficiencies of the harmonics can be enhanced. As a result, a super-continuum with the bandwidth of 85 eV, contributed by the single harmonic emission peak and the near-single short quantum path, can be obtained. Finally, through the Fourier transformation of the selected harmonics on this supercontinuum, a near-single attosecond pulse with a full width at half maximum of 52 as can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Krausz and M. Ivanov, Rev. Mod. Phys., 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  2. G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F. Légaré, C. R. McDonald, T. Brabec, and P. B. Corkum, Nature, 462, 522–526 (2015).

    Google Scholar 

  3. T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, Nature, 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  4. P. C. Li, C. Laughlin, and S. I. Chu, Phys. Rev. A, 89, 023431 (2014).

    Article  ADS  Google Scholar 

  5. K. J. Yuan and A. D. Bandrauk, Phys. Rev. Lett., 110, 023003 (2013).

  6. X. B. Bian and A. D. Bandrauk, Phys. Rev. Lett., 105, 093903 (2010).

  7. M. F. Ciappina, J. A. Pérez-Hernández, A. S. Landsman, W. Okell, S. Zherebtsov, B. Förg, J. Schötz, J. L. Seiffert, T. Fennel, T. Shaaran, T. Zimmermann, A. Chacón, R. Guichard, A. Zaïr, J. W. G. Tisch, J. P. Marangos, T. Witting, A. Braun, S. A. Maier, L. Roso, M. Krüger, P. Hommelhoff, M. F. Kling, F Krausz, and M Lewenstein, Rep. Prog. Phys., 80, 054401 (2017).

    Article  ADS  Google Scholar 

  8. R. E. F. Silva, F. Catoire, P. Riviere, H. Bachau, and F. Martin, Phys. Rev. Lett., 110, 113001 (2013).

    Article  ADS  Google Scholar 

  9. P. B. Corkum, Phys. Rev. Lett., 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  10. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Science, 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  11. Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, Phys. Rev. Lett., 98, 203901 (2007).

    Article  ADS  Google Scholar 

  12. C. L. Xia and X. S. Liu, Phys. Rev. A, 87, 043406 (2013).

  13. X. Wang, C. Jin, and C. D. Lin, Phys. Rev. A, 90, 023416 (2014).

  14. T. Popmintchev, M. C. Chen, O. Cohen, M. Grisham, J. Rocca, M. Murnane, and H. Kapteyn, Opt. Lett., 33, 2128–2130 (2008).

    Article  ADS  Google Scholar 

  15. J. J. Xu, B. Zeng, and Y. L. Yu, Phys. Rev. A, 82, 053822 (2010).

  16. L. Q. F eng and T. S. Chu, Phys. Rev. A, 84, 053853 (2011).

  17. L. Q. Feng, Phys. Rev. A, 92, 053832 (2015).

  18. P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, Opt. Lett., 19, 1870–1872 (1994).

    Article  ADS  Google Scholar 

  19. Z. Chang, Phys. Rev. A, 71, 023813 (2005).

  20. F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, Nat. Photonics, 4, 875–879 (2010).

    Article  ADS  Google Scholar 

  21. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, Science, 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  22. J. Li, X. M. Ren, Y. C. Yin, Y. Cheng, E. Cunningham, Y. Wu, and Z. H. Chang, Appl. Phys. Lett., 108, 231102 (2016).

    Article  ADS  Google Scholar 

  23. H. Mashiko, S. Gibertson, C. Q. Li, S. D. Khan, M. M. Shakya, E. Moon, and Z. H. Chang, Phys. Rev. Lett., 100, 103906 (2008).

    Article  ADS  Google Scholar 

  24. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. W. Wang, and Z. H. Chang, Opt. Lett., 37, 3891–3893 (2012).

    Article  ADS  Google Scholar 

  25. L. Q. Feng, W. L. Li, and R. S. Castle, J. Appl. Spectrosc., 85, 171 (2018).

    ADS  Google Scholar 

  26. R. F. Lu, P. Y. Zhang, and K. L. Han, Phys. Rev. E, 77, 066701 (2008).

  27. J. Hu, K. L. Han, and G. Z. He, Phys. Rev. Lett., 95, 123001 (2005).

    Article  ADS  Google Scholar 

  28. L. Q. Feng and H. Liu, Phys. Plasmas, 22, 013107 (2015).

  29. L. Q. Feng, W. L. Li, and H. Liu, Ann. Phys. (Berlin), 529, 1700093 (2017).

    Article  ADS  Google Scholar 

  30. X. Cao, S. C. Jiang, C. Yu, Y. H. Wang, L. H. Bai, and R. F. Lu, Opt. Express, 22, 26153–26161 (2014).

    Article  ADS  Google Scholar 

  31. P. Antoine, B. Piraux, and A. Maquet, Phys. Rev. A, 51, R1750–R1753 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Z. Feng.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 5, pp. 794–801, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Castle, R.S. & Feng, A.Y.Z. Generation of Single Attosecond Pulse by Using Asymmetric Polarization Gating Technology. J Appl Spectrosc 86, 877–884 (2019). https://doi.org/10.1007/s10812-019-00909-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00909-y

Keywords

Navigation