Skip to main content
Log in

Synthesis and Computational Studies of Molecular Structure and Vibrational Spectra of 2-Amino-4-(4-Nitrophenyl)-4H-Pyrano-[3,2-H]Quinolines

  • Published:
Journal of Applied Spectroscopy Aims and scope

We have disclosed the synthesis of pyranoquinoline derivatives via a one-pot reaction of 4-nitro benz aldehyde, malononitrile/ethyl cyanoacetate and 8-hydroxyquinoline using 30 mol.% DMAP in ethanol under reflux conditions. The Fourier transform infrared spectra of ethyl 2-amino-4-(4-nitrophenyl)-4H-pyra no[3,2-h]quinoline-3-carboxylate were recorded within the range 4000–400 cm–1. The Hartree–Fock and density functional theory on the 6-311G basis set have been utilized to calculate molecular geometry, vibrational frequencies, atomic charges and thermodynamic parameters. Further, the vibrational energy distribution analysis program was applied to assign the vibrational wavenumbers based on potential energy distribution. The HOMO–LUMO energies, the temperature dependence of the thermodynamic properties, the total electron density, and molecular electrostatic potential maps are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Wickel, C. A. Citron, and J. S. Dickschat, Eur. J. Org. Chem., 2906–2913 (2013).

    Article  Google Scholar 

  2. J. A. Makawana, M. P. Patel, and R. G. Patel, Arch. Pharm., 345, 314–322 (2012).

    Article  Google Scholar 

  3. Y. Deng, J. P. Lee, M. Tianasoa-Ramamonjy, J. K. Synder, S. A. D. Etages, D. Synder, M. P. Kanada, and C. J. Turner, J. Nat. Prod., 63, 1082–1089 (2000).

    Article  Google Scholar 

  4. N. A. Keiko, L. G. Stepanova, M. G. Voronkov, G. I. Potapova, N. O. Gudratov, and E. M. Treshchalina, J. Pharm. Chem., 36, 407–409 (2002).

    Article  Google Scholar 

  5. S. Prado, H. Ledeit, S. Michel, M. Koch, J. C. Darbord, S. T. Cole, F. Tillequin, and P. Brodin, Bioorg. Med. Chem., 14, 5423–5428 (2006).

    Article  Google Scholar 

  6. A. R. Saundane, K. Vijaykumar, and A. V. Vaijinath, Bioorg. Med. Chem. Lett., 23, 1978–1984 (2013).

    Article  Google Scholar 

  7. P. G. Pietta, J. Nat. Prod., 63, 1035–1042 (2000).

    Article  Google Scholar 

  8. M. D. Aytemir and B. Özçelik, Eur. J. Med. Chem., 45, 4089–4095 (2010).

    Article  Google Scholar 

  9. P. W. Smith, S. L. Sollis, P. D. Howes, P. C. Cherry, I. D. Starkey, K. N. Cobley, H. Weston, J. Scicinski, A. Merritt, A. Whittington, P. Wyatt, N. Taylor, D. Green, R. Bethell, S. Madar, R. J. Fenton, P. J. Morley, T. Pateman, and A. Beresford, J. Med. Chem., 41, 787–797 (1998).

    Article  Google Scholar 

  10. A. Venkatesham, R. S. Rao, K. Nagaiah, J. S. Yadav, G. RoopaJones, S. J. Basha, B. Sridhar, and A. Addlagatta, Med. Chem. Commun., 3, 652–658 (2012).

    Article  Google Scholar 

  11. L. Bonsignore, G. Loy, D. Secci, and A. Calignano, Eur. J. Med. Chem., 28, 517–520 (1993).

    Article  Google Scholar 

  12. D. Armetso, W. M. Horspool, N. Martin, A. Ramos, and C. Seoane, J. Org. Chem., 54, 3069–3072 (1989).

    Article  Google Scholar 

  13. K. H. Lee, S. M. Kim, J. Y. Kim, Y. K. Kim, and S. S. Yoon, Bull. Korean Chem. Soc., 31, 2884–2888 (2010).

    Article  Google Scholar 

  14. R. Klingenstein, P. Melnyk, S. R. Leliveld, A. Ryckebusch, and C. Korth, J. Med. Chem., 49, 5300–5308 (2006).

    Article  Google Scholar 

  15. S. Vandekerckhove, H. G. Tran, T. Desmet, and M. D'hooghe, Bioorg. Med. Chem. Lett., 23, 4641–4643 (2013).

    Article  Google Scholar 

  16. K. C. Fang, Y. L. Chen, J. Y. Sheu, T. C. Wang, and C. C. Tzeng, J. Med. Chem., 43, 3809–3812 (2000).

    Article  Google Scholar 

  17. A. K. Sadana, Y. Mirza, K. R. Aneja, and O. Prakash, Eur. J. Med. Chem., 38, 533–536 (2003).

    Article  Google Scholar 

  18. Y. L. Chen, I. L. Chen, C. M. Lu, C. C. Tzeng, L. T. Tsao, and J. P. Wang, Bioorg. Med. Chem., 12, 387–392 (2004).

    Article  Google Scholar 

  19. G. Barbosa-Lima, A. M. Moraes, A. S. Araújo, E. T. Silva, C. S. Freitas, Y. R. Vieira, A. Marttorelli, J. C. Neto,

  20. P. T. Bozza, M. V. N. Souza, and T. M. L. Souza, Eur. J. Med. Chem., 127, 334–340 (2017).

  21. K. Rurack, A. Danel, K. Rotkiewicz, D. Grabka, M. Spieles, and W. Rettig, Org. Lett.,4, 4647–4650 (2002).

    Article  Google Scholar 

  22. F. Liang, Z. Xie, L. Wang, X. Jing, and F. Wang, Tetrahedron Lett., 43, 3427–3430 (2002).

    Article  Google Scholar 

  23. N. J. Parmar, R. A. Patel, B. D. Parmar, and N. P. Talpada, Bioorg. Med. Chem. Lett., 23, 1656 (2013).

    Article  Google Scholar 

  24. P. Gunasekaran, P. Prasanna, and S. Perumal, Tetrahedron Lett., 55, 329 (2014).

    Article  Google Scholar 

  25. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT (2013).

  26. M. H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw (2004).

  27. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

    Article  ADS  Google Scholar 

  28. A. D. Becke, Phys. Rev. A, 38, 3098 (1988).

    Article  ADS  Google Scholar 

  29. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).

    Article  ADS  Google Scholar 

  30. A. Frisch, A. B. Neilson, and A. J. Holder, GAUSSVIEW User Manual, Gaussian Inc. Pittsburgh, PA (2000).

    Google Scholar 

  31. R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955).

    Article  ADS  Google Scholar 

  32. H. Tanak, Y. Köysal, Y. Ünver, M. Yavuz, S. Isık, and K. Sancak, Mol. Phys., 108, 127 (2010).

    Article  ADS  Google Scholar 

  33. S. Muthu and E. I. Paulraj, Solid State Sci., 14, 476 (2012).

    Article  ADS  Google Scholar 

  34. R. Mathammal, N. Jayamani, and N. Geetha, J. Spectrosc., 2013, 171735 (2013).

    Article  Google Scholar 

  35. E. Kavitha, N. Sundaraganesan, and S. Sebastian, Ind. J. Pure Appl. Phys., 48, 20–30 (2010)

    Google Scholar 

  36. A. Jayaprakash, V. Arjunan, and S. Mohan, Spectrochim. Acta, A, 81, 620–630 (2011).

    Article  ADS  Google Scholar 

  37. J. BevanOtt and J. Boerio-Goates, Chemical Thermodynamics: Principles and Applications, Academic Press, San Diego (2000).

    Google Scholar 

  38. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York (1976).

    Google Scholar 

  39. J. M. Semanario, Recent Developments and Applications of Modern Density Functional Theory, 4, Elsevier, The Netherlands (1996).

    Google Scholar 

  40. T. Yesilkaynak, G. Binzer, F. Mehmet Emen, U. Florke, N. Kulcu, and H. Arslan, Eur. J. Chem., 1, 1 (2010).

    Article  Google Scholar 

  41. B. Kosar and C. Albayrak, Spectrochim. Acta, A, 78, 96 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Singh.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 4, p. 666, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, P., Kumar, A., Uppal, A. et al. Synthesis and Computational Studies of Molecular Structure and Vibrational Spectra of 2-Amino-4-(4-Nitrophenyl)-4H-Pyrano-[3,2-H]Quinolines. J Appl Spectrosc 86, 715–725 (2019). https://doi.org/10.1007/s10812-019-00885-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00885-3

Keywords

Navigation