Skip to main content
Log in

Pyridinecarboxaldehydes: Structures, Vibrational Assignments and Molecular Characteristics Using Experimental and Theoretical Methods

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The main focus of this article is on the structural, energetic and vibrational properties of three monosubstituted pyridines, wherein one of the hydrogen atoms of the pyridine is replaced by an aldehyde moiety. To this end, we recorded the Fourier transform infrared, Fourier transform Raman and UV–visible spectra of picolinaldehyde (PA), nicotinaldehyde (NA) and isonicotinaldehyde (IA) at 4000–450 cm−1, 4000–50 cm−1 and 200–400 nm, respectively. The initial value of the torsional angle around the C–Cα bond, needed for initiating geometry optimisation, was determined by calculating torsional potential energy for various values of dihedral angle around this bond in the entire conformational space from 0˚ to 360˚ for the three molecules. Quantum chemical calculations were made at the DFT/B3LYP/6–311 +  + G(d,p) level of theory for PA, NA and IA to determine structure parameters in the ground state (in the gas phase), barrier height around the C–Cα bond, the general valence force field, harmonic vibrational fundamentals, potential energy distribution (PED) and infrared and Raman intensities. A time-dependent version of density functional theory (TD-DFT) was employed to evaluate oscillator strengths and absorption maxima (λmax) in CDCl3 solution for electronic transitions. Structure parameters, IR, Raman and UV–Vis spectra exhibited good agreement between the theoretical and experimental parameters. Complete vibrational assignments were made for the three molecules unambiguously, using PED and eigenvectors calculated in the process, for the first time. The rms error between observed and simulated vibrational frequencies was 9.9, 10.4 and 9.4 cm−1, for PA, NA and IA, respectively, on scaling. In addition, we made a theoretical evaluation of nonlinear optical (NLO) properties, frontier molecular orbital (FMO) parameters, natural bond orbital (NBO) characteristics, and molecular electrostatic potential (MESP) surface analysis, along with natural population analysis (NPA) studies, in order to make the characterisation of the molecules under investigation as complete as possible. The dimeric structures of these molecules caused by the formation of intermolecular hydrogen bonds were computed at the same level of theory as used for their corresponding monomers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Kawashima, M. Suzuki, K. Kozima, Bull. Chem. Soc. Jpn. (1975). https://doi.org/10.1246/bcsj.48.2009

    Article  Google Scholar 

  2. K. Georgious, G. Roussy, J. Mol. Spectrosc. (1980). https://doi.org/10.1016/0022-2852(80)90107-1

    Article  Google Scholar 

  3. L. Haeck, A. Bouchy, G. Roussy, Chem. Phys. Letters. (1979). https://doi.org/10.1016/0009-2614(77)80498-3

    Article  Google Scholar 

  4. H. Lumbroso, D.M. Bertin, G.C. Pappalardo, J. Mol. Struct. (1977). https://doi.org/10.1016/0022-2860(77)87012-9

    Article  Google Scholar 

  5. W. Danchura, T. Schaefer, J.B. Rowbotham, D.J. Wood, Can. J. Chem. (1974). https://doi.org/10.1139/v74-595

    Article  Google Scholar 

  6. L. Lunazzi, D. Macciantelli, G. Cerioni, J. Chem. Soc. Perkin II (1976) https://doi.org/10.1039/P29760001791

  7. I. G. John, G. L. D. Ritchie, J. Radom, J. Chem. Soc. Perkin II (1977) https://doi.org/10.1039/P29770001601

  8. O.E. Taurian, D.G. De Kowalewski, J.E. Perez, R.H. Contreras, J. Mol. Struct. (2005). https://doi.org/10.1016/j.molstruc.2005.06.002

    Article  Google Scholar 

  9. T. Itoh, J. Phys. Chem. (2006). https://doi.org/10.1021/jp068043a

    Article  Google Scholar 

  10. K. Ohno, T. Itoh, Ch. Yokota, Y. Katsumoto, J. Mol. Struct. (2006). https://doi.org/10.1016/j.molstruc.2006.04.033

    Article  Google Scholar 

  11. L. Cluyts, A. Sharma, N. Kus, K. Schoone, R. Fausto, Spectrochim Acta A (2017). https://doi.org/10.1016/j.saa.2016.08.002

    Article  Google Scholar 

  12. V. Galasso, Mol. Phys. (1973). https://doi.org/10.1080/00268977300101391

    Article  Google Scholar 

  13. M. Han, Yi Zhao, W. Liang, J. Mol. Struct. Theochem. (2007). https://doi.org/10.1016/j.theochem.2007.05.020

  14. J.H.S. Green, D.J. Harrison, Spectrochim Acta A (1977). https://doi.org/10.1016/0584-8539(77)80150-5

    Article  Google Scholar 

  15. S.P. Jose, S. Mohan, Spectrochim Acta A (2002). https://doi.org/10.1016/j.saa.2005.06.040

    Article  Google Scholar 

  16. A. Saglam, F. Ucun, V. Guclu, Spectrochim Acta A (2007). https://doi.org/10.1016/j.saa.2006.08.005

    Article  Google Scholar 

  17. E. Sigma-Aldritch, Webpage (Sigma-Aldritch Corp, New York, 2006)

    Google Scholar 

  18. H.H. Abdallah, P.H. Yeoh, L. Rhyman, I.A. Alswaidan, H.K. Fun, Y. Umar, P. Ramasami, J. Sol. Chem. (2016). https://doi.org/10.1007/s10953-016-0499-1

    Article  Google Scholar 

  19. Ö. Alver, C. Parlak, M. Senyel, J. Mol. Struct. (2009). https://doi.org/10.1016/j.molstruc.2009.02.012

    Article  Google Scholar 

  20. Ö. Alver, C. Parlak, Vib. Spectrosc. (2010). https://doi.org/10.1016/j.vibspec.2010.05.001

    Article  Google Scholar 

  21. Özgür Alver, Cermal Parlak, J. Theor. Comput. Chem. (2010). https://doi.org/10.1142/S0219633610005888

  22. C. Parlak, Ö. Alver, O. Baglayan, P. Ramasami, J. Biomol. Struct. Dyn. (2022). https://doi.org/10.1080/07391102.2022.2066022

    Article  Google Scholar 

  23. A.D. Becke, J. Chem. Phys. (1993). https://doi.org/10.1063/1.464304

    Article  Google Scholar 

  24. C. Lee, W. Yang, R.G. Parr, Phys Rev. B (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  25. M. J. Frisch, Gaussian 09 Revision B.01 (Wallingford CT: Gaussian, Inc, 2010).

  26. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  Google Scholar 

  27. A.D. Becke, Phys. Review. A (1988). https://doi.org/10.1103/PhysRevA.38.3098

    Article  Google Scholar 

  28. Ed. P. Ziesche and H. Echring, Electronic structure of solids. Academic Verlog Berlin, 1992.

  29. K. Srishailam, B. Venkatram Reddy, G. Ramana Rao, J. Mol. Struct. (2019). https://doi.org/10.1016/j.molstruc.2019.06.064

  30. P. Venkata Ramana Rao, K. Srishailam, B. Venkatram Reddy, G. Ramana Rao, J. Mol. Struct. (2021) https://doi.org/10.1016/j.molstruc.2021.130617

  31. K. Srishailam, K. Ramaiah, K. Laxma Reddy, B. Venkatram Reddy, G. Ramana Rao, Chem Paper (2021). https://doi.org/10.1007/s11696-021-01595-x

    Article  Google Scholar 

  32. K. Srishailam, K. Ramaiah, K. Laxma Reddy, B. Venkatram Reddy, G. Ramana Rao, Mole. Simul. (2022) https://doi.org/10.1080/08927022.2022.2086277

  33. R. Dennington et al, Gauss View, Version 5.0. Semichem Inc. Shawnee Mission (2009)

  34. G. Fogarasi, P. Pulay, J.R. Durig (Eds), Chapter 3, Vol. 4, Elsevier, Amsterdam 125 (1985)

  35. G. Fogarasi, X. Zhou, P.W. Taylor, P. Pulay, J. Am. Chem. Soci. (1992). https://doi.org/10.1021/ja00047a032

    Article  Google Scholar 

  36. T. Sundius, J. Mol. Struct. (1990). https://doi.org/10.1016/0022-2860(90)80287-T

    Article  Google Scholar 

  37. T. Sundius, Vib. Spectrsc. (2002). https://doi.org/10.1016/S0924-2031(01)00189-8

    Article  Google Scholar 

  38. P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha J. Am. Chem. Soc. (1983). https://doi.org/10.1021/ja00362a005

    Article  Google Scholar 

  39. J.F. Arenas, I.L. Tocon, J.C. Otero, J.I. Marcos, J. Mol. Struct. (1999). https://doi.org/10.1016/S0022-2860(98)00541-9

    Article  Google Scholar 

  40. Z. Latajka, W.B. Person, K. Morokuma, J. Mol. Struct. Theochem. (1986). https://doi.org/10.1016/0166-1280(86)80063-X

    Article  Google Scholar 

  41. G. Kereztury et al., Spectrochim Acta A (1993). https://doi.org/10.1016/S0584-8539(09)91012-1

    Article  Google Scholar 

  42. G. Kereztury et al., Raman spectroscopy: Theory in handbook of vibrational spectroscopy, vol. 1 (John Wiley and Sons Ltd., New York, 2002), pp.71–87

    Google Scholar 

  43. G. Scalmani, M.J. Frisch, J. Chem. Phys. (2010). https://doi.org/10.1063/1.3359469

    Article  Google Scholar 

  44. A.D. Buckingham, Adv. Chem. Phys. (1967). https://doi.org/10.1002/9780470143582.ch2

    Article  Google Scholar 

  45. G. Gece et al., Corros. Sci. (2008). https://doi.org/10.1016/j.corsci.2008.08.043

  46. K. Fukui et al., Science 217, 747 (1982)

    Article  ADS  Google Scholar 

  47. T.A. Koopmans et al., Physica 1, 104 (1933)

    Article  ADS  Google Scholar 

  48. R.J. Parr, L.V. Szentpa´ly, S. Liu, J. Am. Chem. Soc. (1999), https://doi.org/10.1021/ja983494x.

  49. A.E.L. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  Google Scholar 

  50. D. Mootz, H.G. Wussow, J. Chem. Phys. (1981). https://doi.org/10.1063/1.442204

    Article  Google Scholar 

  51. K.B. Borisenko, C.W. Bock, I. Hargittai, J. Phys. Chem. (1996). https://doi.org/10.1021/jp953629a

    Article  Google Scholar 

  52. B. Bak, L. Hasen-Nygaard, J. Rastrup-Andersen, J. Mol. Spectrosc. (1958). https://doi.org/10.1016/0022-2852(58)90087-0

    Article  Google Scholar 

  53. T. Steiner, G.R. Desiraju, Chem. Commun. (1998). https://doi.org/10.1039/A708099I

    Article  Google Scholar 

  54. F.R. Jensen, C.H. Bushweller, J. Am. Chem. Soc. (1969). https://doi.org/10.1021/ja01040a022

    Article  Google Scholar 

  55. B. Liu, A.D. McLean, J. Chem. Phys. (1973). https://doi.org/10.1063/1.1680654

    Article  Google Scholar 

  56. S.F. Boys, F. Bernardi, Mol. Phys. (1970). https://doi.org/10.1080/00268977000101561

    Article  Google Scholar 

  57. S. Simon, M. Duran, J.J. Dannenberg, J. Chem. Phys. (1996). https://doi.org/10.1063/1.472902

    Article  Google Scholar 

  58. J. B. Foresman and A. Frisch, Gaussian Inc., 3rd edition, Wallingford CT USA (2015) pp.440

  59. D.G.A. Smith, L.A. Burns, K. Patkowski, C.D. Sherrill, J. Phys. Chem. Lett. (2016). https://doi.org/10.1021/acs.jpclett.6b00780

    Article  Google Scholar 

  60. Y. Umar, J. Tijani, J. Struct. Chem. (2015). https://doi.org/10.1134/S0022476615070112

    Article  Google Scholar 

  61. (a) E. B. Wilson, Jr. J Chem Phys. (1939) https://doi.org/10.1063/1.1750363 (b) E. B. Wilson, Jr. J Chem Phys. (1941) https://doi.org/10.1063/1.1750829

  62. Y.-X. Sun et al., J. Mol. Struct. Theochem. 904, 74–82 (2009). https://doi.org/10.1016/j.theochem.2009.02.036

    Article  Google Scholar 

  63. Y.-X. Sun et al., Mol. Phys. (2009). https://doi.org/10.1080/00268970902769471

    Article  Google Scholar 

  64. C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, A. Collet, J. Am. Chem. Soc. (1994). https://doi.org/10.1021/ja00084a055

    Article  Google Scholar 

  65. D. Sajan et al., J. Mol. Struct. (2006). https://doi.org/10.1016/j.molstruc.2005.09.041

    Article  Google Scholar 

  66. Y.-X. Sun et al., J Mol Struct Theochem. (2009). https://doi.org/10.1016/j.theochem.2009.02.036

    Article  Google Scholar 

  67. A.B. Ahmed et al., Spectrochim Acta A (2010). https://doi.org/10.1016/j.saa.2009.10.026

    Article  Google Scholar 

  68. J.P. Abraham et al., J. Mol. Struct. (2009). https://doi.org/10.1016/j.molstruc.2008.06.031

    Article  Google Scholar 

  69. S.G. Sagdinc, A. Esme A, Spectrochim. Acta A (2010) https://doi.org/10.1016/j.saa.2010.01.004.

  70. M. Arivazhagan, S. Jeyavijayan, Spectrochim Acta A (2011). https://doi.org/10.1016/j.saa.2011.03.036

    Article  Google Scholar 

  71. R.M. Parrish et al, Phys. Rev. Lett. (1–6), 122 (2019)

  72. D. Jacquemin, E.A. Perpete, I. Ciofini, C. Adamo, Acc. Chem. Res. (2009). https://doi.org/10.1021/ar800163d

    Article  Google Scholar 

  73. D. Jacquemin, J. Preat, V. Wathelet et al., J. Am. Chem. Soc. (2006). https://doi.org/10.1021/ja056676h

    Article  Google Scholar 

  74. I. Ciofini I, C. Adamo, J. Phys. Chem. A (2007) https://doi.org/10.1021/jp0722152

  75. D. Maric, J.P. Burrows, J. Phys. Chem. A (1996). https://doi.org/10.1021/jp952548b

    Article  Google Scholar 

  76. D. Maric, J.N. Crowley, J.P. Burrows, J. Phys. Chem. A (1997). https://doi.org/10.1021/jp961715k

    Article  Google Scholar 

  77. E.A.G. Bremond, J. Kieffer, C.J. Adamo, J. Mol. Struct. Theochem. (2010). https://doi.org/10.1016/j.theochem.2010.04.038

    Article  Google Scholar 

  78. D. Jacquemin, E.A. Perpète, Chem. Phys. Lett. (2006). https://doi.org/10.1016/j.cplett.2006.08.028

    Article  Google Scholar 

  79. J. Preat, C. Michaux, A. Lewalle, E.A. Perpète, D. Jacquemin, Chem. Phys. Lett. (2008). https://doi.org/10.1016/j.cplett.2007.11.056

    Article  Google Scholar 

  80. K. Fukui, Science (1982). https://doi.org/10.1126/science.218.4574.747

    Article  Google Scholar 

  81. T. Koopmans, Physica (1933). https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  82. L. Sinha et al., J. Mol. Simul. (2011). https://doi.org/10.1080/08927022.2010.533273

    Article  Google Scholar 

  83. D.F.V. Lewis et al., Xenobiotica (1994). https://doi.org/10.3109/00498259409043282

    Article  Google Scholar 

  84. B. Kosar, C. Albayrak, Spectrochim Acta A (2011). https://doi.org/10.1016/j.saa.2010.09.016

    Article  Google Scholar 

  85. M. Nakano et al., J. Am. Chem. Soc. (2002). https://doi.org/10.1021/ja0115969

    Article  Google Scholar 

  86. E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1, TCI, University of Wisconsin, Madison (1998)

  87. F.J. Luque, J.M. López, M. Orozco, Theo Chem Accounts (2000). https://doi.org/10.1007/s002149900013

    Article  Google Scholar 

  88. E. Scrocco, J. Tomasi, Topics in current chemistry (New Concepts-II, New York, 1973)

    Google Scholar 

  89. N. Kalaiarasi, S. Manivarman, Oriental J. Chem. (2017). https://doi.org/10.13005/ojc/330136

  90. P. Politzer, J.S. Murray, Theor. Chem. Acc. (2002). https://doi.org/10.1007/s00214-002-0363-9

    Article  Google Scholar 

  91. L. Ravindranath, B. Venkatram Reddy, J. Mol. Struct. (2020) https://doi.org/10.1016/j.molstruc.2019.127089

  92. S. Gunasekaran, S. Kumaresan, R. Arunbalaji, G. Anand, S. Srinivasan, J. Chem. Sci. (2008). https://doi.org/10.1007/s12039-008-0054-8

    Article  Google Scholar 

  93. R. John Xavier, E. Gobinath, Spectrochim Acta A (2012). https://doi.org/10.1016/j.saa.2012.06.008.

  94. Z. Demircioglu, C.A. Kastas, B. Orhan, J. Mol. Struct. (2015). https://doi.org/10.1016/j.molstruc.2015.02.076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Venkatram Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1221 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, G., Rao, P.V.R., Srishailam, K. et al. Pyridinecarboxaldehydes: Structures, Vibrational Assignments and Molecular Characteristics Using Experimental and Theoretical Methods. Braz J Phys 53, 45 (2023). https://doi.org/10.1007/s13538-023-01255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01255-3

Keywords

Navigation