Skip to main content
Log in

Cytotoxicity and DNA Binding Ability of Two Novel Gold(III) Complexes

  • Published:
Journal of Applied Spectroscopy Aims and scope

The interaction of two gold(III) complexes [Au(phen)Cl2](Cl) (1) and [Au(pdon)Cl2](Cl) (2) with calf thymus-DNA (CT-DNA) has been investigated by absorption and fluorescence emission. Both complexes 1 and 2 show medium interaction ability with CT–DNA with the intrinsic binding constants Kb of 4.98 × 105 and 1.98 × 105 M–1 at room temperature, respectively, which is the same as earlier reports for typical classical intercalators. Moreover, complex 1 demonstrates a better antitumor effect on the tested cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Sleire, H. E. Forde-Tislevoll, I. A. Netland, L. Leiss, B. S. Skeie, and P. O. Enger, Pharmacol. Res., 124, 74–91 (2017).

    Article  Google Scholar 

  2. B. Jönsson and N. Wilking, J. Cancer Policy, 2, 45–62 (2014).

  3. Y. L. Chen, M. C. Chang, and W. F. Cheng, Cancer Lett., 400, 282–292 (2017).

  4. M. S. Kinch, Drug. Discov. Today, 21, 1046–1050 (2016).

    Article  Google Scholar 

  5. J. P. Delord, C. Puozzo, F. Lefresne, and R. Bugat, Anticancer Res., 29, 553–560 (2009).

  6. D. S. Hsu, B. S. Balakumaran, C. R. Acharya, V. Vlahovic, K. S. Walters, and K. Garman, J. Clin. Oncol., 25, 4350–4357 (2007).

    Article  Google Scholar 

  7. M. T. Sener, E. Sener, A. Tok, B. Polat, I. Cinar, H. Polat, A. Fatih, and S. Halis, Pharmacol. Rep., 64, 594–602 (2012).

    Article  Google Scholar 

  8. P. D. Sanchez-Gonzalez, F. J. Lopez-Hernandez, F. Perez Barriocanal, A. I. Morales, and J. M. Lopez-Novoa, Nephrol. Dial. Transpl., 26, 3484–3495 (2011).

    Article  Google Scholar 

  9. S. I. Sohn, H. K. Rim, Y. H. Kim, J. H. Choi, J. H. Park, J. W. Choi, S. D. Kim, S. Y. Jeong, and K. T. Lee, Biol. Pharm. Bull., 34, 1508–1513 (2011).

    Article  Google Scholar 

  10. A. A. Fouad, A. I. Al-Sultan, S. M. Refaie, and M. T. Yacoubi, Toxicology, 274, 49–56 (2010).

    Article  Google Scholar 

  11. R. P. Miller, R. K. Tadagavadi, G. Ramesh, and W. B. Reeves, Toxins (Basel), 2, 2490–2518 (2010).

    Article  Google Scholar 

  12. C. Zhao, X. Chen, D. Zang, X. Lan, S. Liao, C. Yang, P. Q. Zhang, J. J. Wu, X. F. Li, N. N. Liu, Y. N. Liao, H. B. Huang, X. P. Shi, L. L. Jiang, X. H. Liu, Z. M. He, X. J. Wang, and J. B. Liu, Biochem. Pharmacol., 116, 22–38 (2016).

    Article  Google Scholar 

  13. T. S. Reddy, S. H. Priver, N. Mirzadeh, and S. K. Bhargava, J. Inorg. Biochem., 175, 1–8 (2017).

    Article  Google Scholar 

  14. N. P. E. Barry and P. J. Sadler, Che m. Commun., 49, 5106–5131 (2013).

    Article  Google Scholar 

  15. G. Gasser and N. Metzler-Nolte, Curr. Opin. Chem. Biol., 16, 84–91 (2012).

    Article  Google Scholar 

  16. T. Zou, C. T. Lum, C. N. Lok, J. J. Zhang, and C. M. Che, Chem. Soc. Rev., 44, 8786–8801 (2015).

    Article  Google Scholar 

  17. F. Trudu, F. Amato, P. Vaňhara, T. Pivetta, E. M. Peña-Méndez, and J. Havel, J. Appl. Biomed., 13, 79–103 (2015).

    Article  Google Scholar 

  18. S. Medici, M. Peana, V. M. Nurchi, J. I. Lachowicz, G. Crisponi, and M. A. Zoroddu, Coordin. Chem. Rev., 284, 329–350 (2015).

    Article  Google Scholar 

  19. M. N. Patel, B. S. Bhatt, and P. A. Dosi, Inorg. Chem. Commun., 29, 190–193 (2013).

    Article  Google Scholar 

  20. T. Zou, C. T. Lum, C. N. Lok, J. J. Zhang, and C. M. Che, Chem. Soc. Rev., 44, 8786–8801 (2015).

    Article  Google Scholar 

  21. C. T. Lum, Z. F. Yang, H. Y. Li, R. Wai-Yin Sun, S. T. Fan, R. T. Poon, M. C. M. Lin, C. M. Che, and H. F. Kuang, Int. J. Cancer, 118, 1527–1538 (2006).

    Article  Google Scholar 

  22. C. Marzano, L. Ronconi, F. Chiara, M. C. Giron, I. Faustinelli, P. Cristofori, A. Trevisan, and D. Fregona, Int. J. Cancer, 129, 487–496 (2011).

    Article  Google Scholar 

  23. A. Casado-Sanchez, C. Martin-Santos, J. M. Padron, R. Mas-Balleste, C. Navarro-Ranninger, J. Alemánc, and S. Cabrera, J. Inorg. Biochem., 174, 111–118 (2017).

    Article  Google Scholar 

  24. M. F. Tomasello, C. Nardon, V. Lanza, G. Di Natale, N. Pettenuzzo, S. Salmaso, D. Milardi, P. Caliceti, G. Pappalardo, and D. Fregona, Eur. J. Med. Chem., 138, 115–127 (2017).

    Article  Google Scholar 

  25. M. C. Gimeno, H. Goitia, A. Laguna, M. E. Luque, M. D. Villacampa, C. Sepulveda, and M. Meireles, J. Inorg. Biochem., 105, 1373–1382 (2011).

    Article  Google Scholar 

  26. B. Alberto, R. M. Pia, S. Guido, G. Chiara, C. Angela, and M. Luigi, Coordin. Che m. Rev., 253, 1692–1707 (2009).

    Article  Google Scholar 

  27. S. Urig and K. Becker, Semin. Cancer Biol., 16, 452–465 (2006).

    Article  Google Scholar 

  28. Y. Wang, Q. Y. He, R. W. Sun, C. M. Che, and J. F. Chiu, Eur. J. Pharmacol., 554, 113–122 (2007).

    Article  Google Scholar 

  29. T. C. Fuchs and P. Hewitt, AAPS J., 13, 615–631 (2011).

    Article  Google Scholar 

  30. Q. M. Wang, L. Yang, J. H. Wu, H. Wang, J. L. Song, and X. H. Tang, Biometals, 30, No. 1, 17–26 (2017).

    Article  Google Scholar 

  31. Q. M. Wang, H. Mao, W. L. Wang, H. M. Zhu, L. H. Dai, Y. L. Chen, and X. H. Tang, Biometals, 30, No. 4, 575–587 (2017).

    Article  Google Scholar 

  32. S. Satyanarayana, J. C. Dabroniak, and J. B. Chaires, Biochemistry, 31, No. 39, 9319–9324 (1992).

    Article  Google Scholar 

  33. P. Baldini, M. Belicchi-Ferrari, F. Bisceglie, P. P. Dall'Aglio, G. Pelosi, S. Pinelli, and P. Tarasconi, Inorg. Chem., 43, 7170–7179 (2004).

    Article  Google Scholar 

  34. A. Silvestri, G. Barone, G. Ruisi, D. Anselmo, S. Riela, and V. T. Liver, J. Inorg. Biochem., 101, 841–848 (2007).

    Article  Google Scholar 

  35. L. F. Tan, H. Chao, Y. F. Zhou, and L. N. Ji, Polyhedron, 26, No. 13, 3029–3036 (2007).

    Article  Google Scholar 

  36. H. Li, X. Y. Le, D. W. Pang, H. Deng, Z. H. Xu, and Z. H. Lin, J. Inorg. Biochem., 99, No. 11, 2240–2247 (2005).

    Article  Google Scholar 

  37. Mudasir, N. Yoshioka, and H. Inoue, J. Inorg. Biochem., 77, 239 (1999).

    Article  Google Scholar 

  38. P. T. Tamil-Selvi, H. Stoeckli-Evans, and M. J. Palaniandavar, Inorg. Biochem., 99, 2110–2118 (2005).

    Article  Google Scholar 

  39. A. Gohel, M. B. McCarthy, and G. Gronowicz, Endocrinology, 140, 5339–5347 (1999).

    Article  Google Scholar 

  40. J. K. Barton, J. M. Goldberg, C. V. Kumar, and N. J. Turro, J. Am. Chem. Soc., 108, 2081–2088 (1986).

    Article  Google Scholar 

  41. B. D. Wang, Z. Y. Yang, Q. Wang, T. K. Cai, and P. Crewdson, Bioorg. Med. Chem., 14, 1880–1888 (2006).

    Article  Google Scholar 

  42. H. Laitinen, V. P. Hytonen, V. R. Nordlund, and M. S. Kuloma, Cell Mol. Life Sci., 63, 2992–3017 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wang.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 4, pp. 563–568, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, G., Chen, C., Wang, Q. et al. Cytotoxicity and DNA Binding Ability of Two Novel Gold(III) Complexes. J Appl Spectrosc 86, 618–622 (2019). https://doi.org/10.1007/s10812-019-00868-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00868-4

Keywords

Navigation