Skip to main content
Log in

Dynamic Spectrum Extraction Method Based on Absolute Difference Summation and Statistical Theory

  • Published:
Journal of Applied Spectroscopy Aims and scope

Dynamic spectrum theory has great importance in the field of noninvasive measurement of blood components. To enhance the computational efficiency and data utilization of the existing extraction methods, this paper proposes a new one based on the absolute difference summation (ADS) and statistical theory. The ADS is used to obtain the eigenvalue from a photoplethysmography (PPG) signal. The statistical method is used to obtain the final dynamic spectrum. The experimental data of PPG signal from 133 volunteers were extracted by the new method and the single-trial (ST) extraction method, and the partial least squares model was used to build the calibration models. Compared with the ST extraction, the new method showed better prediction ability. The correlation coefficient of the prediction set increased from 0.85 to 0.92, and the root mean square error of the prediction decreased from 13.49 to 9.86 g/L, which proved that this method can significantly improve the quality of the dynamic spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Mcmurdy, G. D. Jay, S. Selim, and G. Crawford, Clin. Chem., 54, 264–272 (2008).

    Article  Google Scholar 

  2. Y. Uwadaira, N. Adachib, A. Ikehatac, and S. Kawanoa, J. Near Infrared Spectrosc., 18, 291–300 (2010).

    Article  ADS  Google Scholar 

  3. G. Bertrand, M. Drame, C. Martageix, and C. Kaplan, Blood, 117, 3209–3213 (2011).

    Article  Google Scholar 

  4. H. Wang, H. Q. Xu, L. M. Qu, X. M. Wang, R. H. Wu, X. Z. Gao, Q. L. Jin, and J. Q. Niu, Eur. J. Gastroenterol. Hepatol., 28, 997–1002 (2016).

    Article  Google Scholar 

  5. K. Maruo, M. Tsurugi, J. Chin, and T. Ota, Select. Top. Quantum Electron., 9, 322–330 (2003).

    Article  Google Scholar 

  6. A. Enejder, S. G. Sasic, and M. Feld, J. Biomed. Opt., 10, 885–889 (2005).

    Article  Google Scholar 

  7. K. J. Jeon, S. Kim, K. K. Park, J. Kim, and G. Yoon, J. Biomed. Opt., 7, 45–50 (2002).

    Article  ADS  Google Scholar 

  8. J. Kraitl, U. Timm, E. Lewis, and H. Ewald, Proc. SPIE, 7572, 757209 (2010).

    Article  Google Scholar 

  9. Y. Yamakoshi, M. Ogawa, T. Yamakoshi, T. Tamura, and K. Yamakoshi, 31st Annual Int. Conf. IEEE EMBS, Minneapolis, Minnesota, USA, 126–129 (2009).

  10. G. Li, Y. L. Liu, L. Lin, and Y. Wang, 3rd Int. Symposium on Instrumentation Science and Technology, August 18–22, Xi'an, China, 3-0875-0880 (2004).

  11. G. Li, Y. Wang, Q. X. Li, X. X. Li, L. Lin, and Y. L. Liu, J. Infrared Millimeter Waves, 25, 345–348 (2006).

    Google Scholar 

  12. G. Li, Y. L. Liu, L. Lin, and Y. Wang, Opt. Precision Eng., 14, 816–821 (2006).

    Google Scholar 

  13. G. Li, H. Q. Wang, Z. Zhao, and L. Lin, Spectrosc. Spectr. Anal., 30, 2385–2389 (2010).

    Google Scholar 

  14. L. Lin, Q. R. Zhan, M. Zhou, S. J. Xu, and G. Li, RSC Advances, 6, 113322–113326 (2016).

    Article  Google Scholar 

  15. Y. Yamakoshi, M. Ogawa, T. Yamakoshi, M. Satoh, M. Nogawa, S. Tanaka, T. Tamura, P. Rolfe, and K. Yamakoshi, Int. Conf. IEEE Engineering in Medicine & Biology Society, 2964–2967 (2007).

  16. Y. H. Luo, Z. Chen, and X. D. Chen, Opt. Precision Eng., 16, 759–763 (2008).

    Google Scholar 

  17. H. Q. Wang, G. Li, Z. Zhao, and L. Lin, Trans. Inst. Measure. Control, 35, 16–24 (2013).

    Article  Google Scholar 

  18. G. Li, X. X. Li, L. Lin, Y. L. Liu, and Y. Wang, Spectrosc. Spectr. Anal., 26, 263–266 (2006).

    Google Scholar 

  19. G. Li, Q. X. Li, L. Lin, X. X. Li, Y. Wang, and Y. L. Liu, Spectrosc. Spectr. Anal., 26, 2177–2180 (2006).

    Google Scholar 

  20. Y. Wang, G. Li, L. Lin, Y. L. Liu, and X. X. Li, Spectrosc. Spectr. Anal., 27, 91–94 (2007).

    Google Scholar 

  21. G. Li, C. Xiong, H. Q. Wang, L. Lin, B. J. Zhang, and Y. Tong, Spectrosc. Spectr. Anal., 31, 1857–1861 (2011).

    Google Scholar 

  22. G. Li, M. Zhou, and L. Lin, Opt. Quantum Electron., 46, 691–698 (2014).

    Article  Google Scholar 

  23. W. Q. He, X. X. Li, M. J. Wang, G. Li, and L. Lin, Anal. Methods, 7, 5565–5573 (2015).

    Article  Google Scholar 

  24. G. Li, Y. Wang, L. Lin, Y. L. Liu, X. X. Li, and S. Y. Lu, IEEE Conference Publications-2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 1960–1963 (2005).

  25. I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, IEEE Signal Process. Mag., 22, 123–151 (2005).

    Article  ADS  Google Scholar 

  26. Y. Peng, G. Li, M. Zhou, H. L. Wang, and L. Lin, RSC Adv., 7, 11198–11205 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Wang.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 6, pp. 933–938, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Wang, H.L., Zhou, M. et al. Dynamic Spectrum Extraction Method Based on Absolute Difference Summation and Statistical Theory. J Appl Spectrosc 85, 1058–1063 (2019). https://doi.org/10.1007/s10812-019-00759-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00759-8

Keywords

Navigation