Skip to main content
Log in

Interaction of Chelerythrine with Keyhole Limpet Hemocyanin: a Fluorescence Spectroscopy and Molecular Docking Study

  • Published:
Journal of Applied Spectroscopy Aims and scope

The quenching mechanism between chelerythrine (CHE) and keyhole limpet hemocyanin (KLH) was investigated using fluorescence spectroscopy and molecular docking. The experiments were conducted at three different temperatures (293, 298, and 303 K). The results revealed that the intrinsic fluorescence of KLH was strongly quenched by CHE through a static quenching mechanism. The thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction were calculated, indicating that the interaction between CHE and KLH was spontaneous and that van der Waals forces and hydrogen bond formation played major roles in the binding process. The intrinsic fluorescence of the tyrosine and tryptophan residues in KLH was studied by synchronous fluorescence, which suggested that CHE changed the conformation of KLH. Finally, molecular docking was used to obtain detailed information on the binding sites and binding affinities between CHE and KLH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zhong, G. Y. Li, and J. G. Zeng, J. Med. Plants Res., 5, 521–526 (2011).

    Google Scholar 

  2. H. Matthias, Int. J. Pest. Manage., 40, 199–206 (1994).

    Article  Google Scholar 

  3. B. Oliver-Bever, J. E thnopharmacol., 9, 1–83 (1983).

    Article  Google Scholar 

  4. C. Steven J, M. E. Do lan, and A. Cha, Clin. Cancer. Res., 6, 737–742 (2000).

  5. C. M. Laura and B. Enrica, Pharmacol. Res., 33, 127–134 (1996).

    Article  Google Scholar 

  6. D. Heinz and J. Elmar, Dev. Comp. Immunol., 28, 673–678 (2004).

    Article  Google Scholar 

  7. N. M. Whiteley, E. W. Taylor, and A. J. El Haj, J. Therm. Biol., 22, 419–427 (1997).

    Article  Google Scholar 

  8. M. Jürgen, B. Lieb, and W. Gebauer, J. Cancer Res. Clin., 127, R3–R9 (2001).

    Article  Google Scholar 

  9. Y. Z. Zhang, X. Xiang, and P. Mei, Spectrochim. Acta A, 72, 907–914 (2009).

    Article  ADS  Google Scholar 

  10. X. Yu, Y. Yang, and X. Zou, Spectrochim. Acta A, 94, 23–29 (2012).

    Article  ADS  Google Scholar 

  11. S. Zhu and Y. Liu, Spectrochim. Acta A, 98, 142–147 (2012).

    Article  ADS  Google Scholar 

  12. T. Oleg and J. Olson, J. Comput. Chem., 31, 455–461 (2010).

    Google Scholar 

  13. G. Christos and M. Jürgen, J. Mol. Biol., 385, 963–983 (2009).

    Article  Google Scholar 

  14. J. Elmar, K. Buchler, J. Markl, and H. Decker, Biochem. J., 426, 373–378 (2010).

    Article  Google Scholar 

  15. E. Jaenicke, K. Büchler, H. Decker, J. Markl, and G. F. Schröder, Iubmb. Life, 63, 183–187 (2011).

    Article  Google Scholar 

  16. M. Garrett, R. Huey, and W. Lindstrom, J. Comput. Chem., 30, 2785–2791 (2009).

    Article  Google Scholar 

  17. G. Johann and M. Mario, Tetrahedron Lett., 36, 3219–3228 (1980).

    Article  Google Scholar 

  18. B. Sutanwi, A. B. Pradhan, and L. Haque, J. Phys. Chem. B, 120, 5–17 (2015).

    Google Scholar 

  19. M. Fujitsuka, D. W. Cho, and T. Iwamoto, Phys. Chem. Chem. Phys., 14, 14585–14588 (2012).

    Article  Google Scholar 

  20. J. Elmar, K. Büchler, and J. Markl, Biochem. J., 426, 373–378 (2010).

    Article  Google Scholar 

  21. O. K. Abou-Zied and O. I. Al-Shihi, J. Am. Chem. Soc., 130, 10793–10801 (2008).

    Article  Google Scholar 

  22. R. Wang, Y. Xie, and Y. Zhang, Spectrochim. Acta A, 108, 62–74 (2013).

    Article  ADS  Google Scholar 

  23. Y. J. Hu, Y. Liu, and R. M. Zhao, J. Photoch. Photobiol. A, 179, 324–329 (2006).

    Article  Google Scholar 

  24. A. Toshio and A. Hiroshi, J. Cell. Biochem., 88, 247–255 (1980).

    Google Scholar 

  25. W. M. Vaughn and G. Weber, Biochemistry, 9, 464–473 (1970).

    Article  Google Scholar 

  26. M. R. Eftink and C. A. Ghiron, J. Phys. Chem., 80, 486–493 (1976).

    Article  Google Scholar 

  27. C. A. Seidel, A. Schulz, and M. H. Sauer, J. Phys. Chem., 100, 5541–5553 (1996).

  28. Y. Pang, Y. Cui, and Y. Ma, IET Micro Nano Lett., 7, 608–612 (2012).

    Article  Google Scholar 

  29. J. Gao, Y. Guo, and J. Wang, Spectrochim. Acta A, 78, 1278–1286 (2011).

    Article  ADS  Google Scholar 

  30. Y. J. Hu, Y. Liu, and J. B. Wang, Biomed., 36, 915–919 (2004).

    Google Scholar 

  31. R. G. Machicote, M. E. Pacheco, and L. Bruzzone, Spectrochim. Acta A, 77, 466–472 (2010).

    Article  ADS  Google Scholar 

  32. X. Zhao, R. Liu, and Z. Chi, J. Phys. Chem. B, 114, 5625–5631 (2010).

    Article  Google Scholar 

  33. Y. Z. Zhang, B. Zhou, and Y. X. Liu, J. Fluoresc., 18, 109–118 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhong.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 2, pp. 305–312, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Long, R.Q., Wang, Y.H. et al. Interaction of Chelerythrine with Keyhole Limpet Hemocyanin: a Fluorescence Spectroscopy and Molecular Docking Study. J Appl Spectrosc 85, 320–326 (2018). https://doi.org/10.1007/s10812-018-0651-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0651-3

Keywords

Navigation