Skip to main content
Log in

Determination of Cerium (IV) Using Rhodamine 6G Fluorescence Quenching

  • Published:
Journal of Applied Spectroscopy Aims and scope

The interaction between rhodamine 6G (Rh6G) and cerium sulfate was studied by the fluorescence quenching method. In a sulfuric acid medium, the interaction of Ce(IV) with Rh6G results in Rh6G fluorescence quenching. The maximum excitation wavelength (λex) and the maximum emission wavelength (λem) are 530 nm and 555 nm, respectively. A good linearity between the relative fl uorescence intensity (ΔF) and Ce(IV) was observed in the range ~0.12–1.08 μg/mL. The detection limit was 1.4 × 10–3 μg/mL. The optimum reaction conditions, influencing factors, and effect of coexisting substances were investigated in the experiment. We found that the concentration of Rh6G was 3.2 × 10–6 mol/L, and the fl uorescence intensity was maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. H. Huang and Z. H. Chen, Talana, 57, 953–959 (2002).

    Article  Google Scholar 

  2. Z. M. Liu, Y. Yi, and S. X. Zhang, Catal. Today, 21, 76–81 (2013).

    Article  Google Scholar 

  3. H. W. Choi, K. H. Lee, N. H. Hur, and H. B. Lim, Anal. Chim. Acta, 847, 10–15 (2014).

    Article  Google Scholar 

  4. Q. Rong and Y. G. Wu, Metallurg. Anal., 34, No. 2, 53–57 (2014).

    Google Scholar 

  5. F. F. Hu, C. H. Wang, and J. D. Li, J. Chin. Mass Spectrom. Soc., 35, No. 4, 330–333 (2014).

    Google Scholar 

  6. X. H. Bai and X. G. Hao, Chin. J. Spectrosc. Lab., 28, No. 6, 2846–2848 (2011).

    Google Scholar 

  7. Y. Y. Liu and P. Wang, Rare Met., 28, No.1, 5 (2009).

    Article  Google Scholar 

  8. J. M. Li and W. T. Wei, Chem. Reagents, 28, No. 3, 387 (2010).

    ADS  Google Scholar 

  9. Z. J. Zhu and Z. F. Hao, Metallurg. Anal., 21, No. 6, 367–368 (1999).

    Google Scholar 

  10. B. G. Li and L. Y. Zhang, Chin. Rare Earths, 31, No. 1, 83–85 (2010).

    MathSciNet  Google Scholar 

  11. C. B. Xia and N. D. Huang, and X. Z. He, Chin. J. Rare Met., 27, No. 6, 863–865 (2008).

    Google Scholar 

  12. R. Puingam and A. Chindaduang, Integrated Ferroelectrics, 155, No. 1, 126–133 (2014).

    Article  Google Scholar 

  13. R. L. Duan, C. Y. Li, and S. P. Liu, J. Taiwan Institute of Chem. Eng., 1–6 (2015).

  14. J. Wang, H. B. Liu, and S. Park, RSC Adv., 2, 4242–4249 (2012).

    Article  Google Scholar 

  15. G. E.Malashkevich, V. B. Prokopenko, D. V. Dem'yanenko, and I. M. Mel'nichenko, Phys. Solid State, 41, No. 11, 1815–1820 (1999).

    Article  ADS  Google Scholar 

  16. Q. Zhang, F. Liu, and X. Y.Huang, J. Mol. Sci., 17, No. 2, 65–70 (2001).

    ADS  Google Scholar 

  17. X. L. Li,Y. J. Hu, and H. Wang, Biomacromolecules, 13, 873–880 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sheng.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 5, p. 835, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Sheng, L., Su, B. et al. Determination of Cerium (IV) Using Rhodamine 6G Fluorescence Quenching. J Appl Spectrosc 84, 900–905 (2017). https://doi.org/10.1007/s10812-017-0562-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0562-8

Keywords

Navigation