Skip to main content
Log in

Study of the Interaction of Cefonicid Sodium with Bovine Serum Albumin by Fluorescence Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The reaction mechanism of cefonicid sodium with bovine serum albumin was investigated by traditional fluorescence spectroscopy and synchronous fluorescence spectroscopy. The results demonstrated that cefonicid sodium caused a strong fluorescence quenching of bovine serum albumin through a static quenching mechanism, during which the electrostatic force played the dominant role in this system, and the number of binding sites in the system was close to 1. It also showed that the primary binding site for cefonicid sodium was closer to tryptophan residues located in sub-hydrophobic domain IIA. Moreover, circular dichroism spectroscopy showed that the secondary structure of bovine serum albumin changed. The donor-to-acceptor distance r < 8 nm indicated that the static fluorescence quenching of bovine serum albumin was a nonradiation energy transfer process. The data obtained from Δλ = 60 nm and λex = 295 nm indicated that synchronous fluorescence spectroscopy had higher sensitivity and accuracy compared to traditional fluorescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Bani-Yaseen, J. Lumin., 131, No. 5, 1042–1047 (2011).

    Article  Google Scholar 

  2. X. R. Li and Y. B. Hao, J. Mol. Struct., 1091, 109–117 (2015).

    Article  ADS  Google Scholar 

  3. Y. F. Wei, X. H. Li, and D. M. Ma, Spect. Anal., 25, No. 4, 588–590 (2005).

    Google Scholar 

  4. H. M. Zhang, Y. Y. Wang, and Q. H. Zhou, J. Mol. Struct., 921, 156–162 (2009).

    Article  ADS  Google Scholar 

  5. Q. Wang, S. R. Zhang, and X. H. Ji, Spectrochim. Acta A, 124, 84–90 (2014).

    Article  Google Scholar 

  6. Y. P. Wang, G. W. Zhang, and L. H. Wang, Pestici. Biochem. Phys., 108, 66–73 (2014).

    Article  Google Scholar 

  7. L. Z. Zhao, Y. S. Zhao, H. H. Teng, S. Y. Shi, and B. X. Ren, J. Appl. Spectrosc., 81, No. 4, 719–724 (2014).

    Article  ADS  Google Scholar 

  8. L. Tang, S. Li, H. N. Bi, and X. Gao, Food Chem., 196, 550–559 (2016).

    Article  Google Scholar 

  9. H. B. Shen, Z. Q. Gu, and K. Jian, J. Pharm. Biomed., 75, 86–93 (2013).

    Article  Google Scholar 

  10. L. H. Zhang, B. S. Liu, and Z. Y. Li, Spectrosc. Lett., 48, 441–446 (2014).

    Article  ADS  Google Scholar 

  11. S. Roy and T. K. Das, J. Appl. Spectrosc., 82, No. 4, 598–606 (2015).

    Article  ADS  Google Scholar 

  12. Y. M. Yang, D. J. Li, and C. Xu, J. Mol. Struct., 1084, 229–235 (2015).

    Article  ADS  Google Scholar 

  13. T. H. Wang, Z. M. Zhao, L. Zhang, and L. Ji, J. Mol .Struct., 937, Nos. 1–3, 65–69 (2009).

    Article  ADS  Google Scholar 

  14. A. Naseri, S. Hosseini, and F. Rasoulzadeh, J. Lumin., 157, 104–112 (2015).

    Article  Google Scholar 

  15. A. Sułkowska, M. Maciążek-Jurczyk, B. Bojko, J. Rownicka, I. Zubik-Skupien, E. Temba, D. Pentak, and W. W. Sulkowski, J. Mol. Struct., 881, Nos. 1–3, 97–106 (2008).

    Article  ADS  Google Scholar 

  16. Z. X. Liao, X. Y. Yu, Q. Yao, and P. G. Yi, Spectrochim. Acta. A, 129, 314–319 (2014).

    Article  ADS  Google Scholar 

  17. Y. Y. Hu, S. Q. Xu, and X. S. Zhu, Spectrochim. Acta. A, 74, No. 2, 526–531 (2009).

    Article  ADS  Google Scholar 

  18. N. Ji, C. Qiu, X. J. Li, L. Xiong, and Q. J. Sun, Colloid Surf. B, 128, 594–599 (2015).

    Article  Google Scholar 

  19. D. D. Chen, Q. Wu, J. Wang, Qi. Wang, and H. Qiao, Spectrochim. Acta A, 135, 511–520 (2015).

    Article  ADS  Google Scholar 

  20. A. Iovescu, A. Băran, and G. Stîngă, J. Photochem. Photobiol. B, 1, No. 4, 198–205 (2015).

    Article  Google Scholar 

  21. Y. Fan, Y. Li, H. Cai, J. Li, J. Miao, D. Fu, and Q. Yang, J. Appl. Spectrosc., 81, No. 5, 795–800 (2014).

    Article  ADS  Google Scholar 

  22. H. X. Bai, C. Yang, and X. R. Yang, Front. Chem. China, 3, No. 1, 105–111 (2008).

    Article  MathSciNet  Google Scholar 

  23. N. Wang, L. Ye, F. F. Yan, and R. Xu, Int. J. Pharm., 351, Nos. 1–2, 55–60 (2008).

    Article  Google Scholar 

  24. G. Siligardi, R. Hussain, and S. G. Patching, BBA Biomembranes, 1838, 34–42 (2014).

    Article  Google Scholar 

  25. S. Tabassum, W. M. Al-Asbahy, M. Afzal, and F. Arjmand, J. Photochem. Photobiol. B, 114, 132–139 (2012).

    Article  Google Scholar 

  26. N. Keswani and N. Kishore, J. Chem. Thermodyn., 43, 1406–1413 (2011).

    Article  Google Scholar 

  27. X.Y. Yu, B. F. Jiang, Z. X. Liao, Y. Jiao, and P. G. Yi, Spectrochim. Acta. A, 149, 116–121 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.-Sh. Liu.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 3, pp. 410–418, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, ST., Liu, BS., Li, TT. et al. Study of the Interaction of Cefonicid Sodium with Bovine Serum Albumin by Fluorescence Spectroscopy. J Appl Spectrosc 84, 431–438 (2017). https://doi.org/10.1007/s10812-017-0488-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0488-1

Keywords

Navigation