Skip to main content
Log in

Comparison of Four Chemometric Techniques for Estimating Leaf Nitrogen Concentrations in Winter Wheat (Triticum Aestivum) Based on Hyperspectral Features

  • Published:
Journal of Applied Spectroscopy Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Four chemometric techniques for estimating LNC in winter wheat were compared by spectral features. The predictive power and impact of sample size were evaluated. Key results include: (1) partial least squares regression (PLSR) and support vector machines regression (SVR) performed better than the other two methods, with coefficient of determination (r 2) values in the calibration set of 0.82 and 0.81 and the normalized root mean square error (NRMSE) values in the validation set of 5.48 and 5.94%, respectively; (2) the lowest accuracy was achieved using stepwise multiple linear regression (SMLR), with r 2 and NRMSE values of 0.78 and 6.52%, respectively; (3) the predictive power of the back propagation neural network (BPN) was enhanced as sample size increased. Sample size less than 80 is not recommended when using BPN. These results suggest that PLSR and SVR are preferred choices to estimate LNC in winter wheat, and BPN is recommended when a sufficient sample size is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Xu, C. Zhao, J. Wang, J. Zhang, and X. Song, Precis. Agric., 15, 227–240 (2014).

    Article  Google Scholar 

  2. P. Miphokasap, K. Honda, C. Vaiphasa, M. Souris, and M. Nagai, Remote Sens., 4, 1651–1670 (2012).

    Article  ADS  Google Scholar 

  3. W. Feng, X. Yao, Y. Zhu, Y. C. Tian, and W. X. Cao, Eur. J. Agron., 28, 394–404 (2008).

    Article  Google Scholar 

  4. C. Zhang, J. M. Kovacs, M. P. Wachowiak, and F. Flores-Verdugo, Remote Sens., 5 , 891–908 (2013).

    Article  ADS  Google Scholar 

  5. X. G. Xu, C. J. Zhao, J. H. Wang, C. J. Li, and X. D. Yang, J. Infrared Millim. W., 32, 351–358 (2013).

    Article  Google Scholar 

  6. P. M. Hansen and J. K. Schjoerring, Remote Sens. Environ., 86, 542–553 (2003).

    Article  Google Scholar 

  7. P. J. Curran, Remote Sens. Environ., 30, 271–278 (1989).

    Article  Google Scholar 

  8. I. Herrmann, A. Karnieli, D. J. Bonfil, Y. Cohen, and V. Alchanatis, Int. J. Remote Sens., 31, 5127–5143 (2010).

    Article  ADS  Google Scholar 

  9. S. Jacquemoud, W. Verhoef, F. Baret, C. Bacour, P. J. Zarco-Tejada, G. P. Asner, C. François, and S. L. Ustin, Remote Sens. Environ., 113, S56–S66 (2009).

    Article  Google Scholar 

  10. Y. C. Tian, X. Yao, J. Yang, W. X. Cao, D. B. Hannaway, and Y. Zhu, Field Crop. Res., 120, 299–310 (2011).

    Article  Google Scholar 

  11. P. Miphokasap, K. Honda, C. Vaiphasa, M. Souris, and M. Nagai, Remote Sens., 4, 1651–1670 (2012).

    Article  ADS  Google Scholar 

  12. Y. Karimi, S. O. Prasher, R. M. Patel, and S. H. Kim, Comput. Electron. Agr., 51, 99–109 (2006).

    Article  Google Scholar 

  13. C. Zhao, Z. Wang, J. Wang, W. Huang, and T. Guo, New Zeal. J. Crop Hort., 39, 251–262 (2011).

    Article  Google Scholar 

  14. O. Mutanga and A. K. Skidmore, Int. J. Appl. Earth Obs, 5, 87–96 (2004).

    Article  Google Scholar 

  15. C. Atzberger, M. Guérif, F. Baret, and W. Werner, Comput. Electron. Agric., 73, 165–173 (2010).

    Article  Google Scholar 

  16. X. Li, Y. Zhang, Y. Bao, J. Luo, X. Jin, X. Xu, X. Song, and G. Yang, Remote Sens., 6, 6221–6241 (2014).

    Article  ADS  Google Scholar 

  17. P. M. Hansen, J. R. Jørgensen, and A. Thomsen, J. Agr. Sci., 139, 307–318 (2002).

    Google Scholar 

  18. Y. Zhao, J. Nan, F. Cui, and L. Guo, J. Zhejiang Univ. Sci. A, 8, 1482–1487 (2007).

    Article  Google Scholar 

  19. S.S. Durbha, R. L. King, and N. H. Younan, Remote Sens. Environ., 107, 348–361 (2007).

    Article  Google Scholar 

  20. P. Janssen and P. Heuberger, Ecol. Model., 83, 55–66 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 2, pp. 262–269, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Nie, C., Wei, C. et al. Comparison of Four Chemometric Techniques for Estimating Leaf Nitrogen Concentrations in Winter Wheat (Triticum Aestivum) Based on Hyperspectral Features. J Appl Spectrosc 83, 240–247 (2016). https://doi.org/10.1007/s10812-016-0276-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0276-3

Keywords

Navigation