Skip to main content
Log in

Spectral-Kinetic Characteristics of ZnS Phosphors Obtained Using the Method of Vapor Transport Synthesis in a Closed System

  • Published:
Journal of Applied Spectroscopy Aims and scope

Samples of crystalline ZnS phosphors are obtained using the method of vapor transport synthesis in a closed system. Employing X-ray phase and structural analysis, two types of the resulting sample structures are revealed. The structural composition of 70% sphalerite+30% wurtzite is obtained under the oxygen excess conditions, whereas a nearly pure wurtzite modification is produced in the deficiency of oxygen. The spectral and kinetic characteristics of the two types of samples with the photoluminescence peaks at 510 and 630 nm are studied. These are attributed to the photoluminescence mechanisms involving self-activated oxygen centers and donor-acceptor pairs. The biexponential form of the photoluminescence decay in the two types of samples is observed, related to the presence of electron capture traps near the level of interstitial zinc. The proposed method of vapor transport synthesis of ZnS in a closed system allows simple monitoring of the thermodynamic parameters of the system and provides chemical stability to the initial and final synthesis products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Davies, A. Vecht, J. Silver, P. J. Marsh, and J. A. Rose, J. Electrochem. Soc., 147, No. 2, 765–771 (2000).

    Article  Google Scholar 

  2. M. K. Samokhvalov, Zh. Prikl. Spektrosk., 62, No. 3, 182–185 (1995) [M. K. Samokhvalov, J. Appl. Spectrosc., 62, No. 3, 555–558 (1995)].

  3. M. Danilkin, M. Must, E. Pedak, E. Pyarnoya, G. Ryasnyi, V. Seman, I. Shpin’kov, and L. Shpin’kova, Zh. Prikl. Spectrosk., 62, No. 3, 186–191 (1995) [M. Danilkin, M. Must, E. Pedak, E. Pyarnoya, G. Ryasnyi, V. Seman, I. Shpin′kov, and L. Shpin′kova, J. Appl. Spectrosc., 62, No. 3, 559–563 (1995)].

  4. Shreyas S. Pitale, Suchinder K. Sharma, R. N. Dubey, M. S. Qureshi, and M. M. Malik, J. Lumin., 128, No. 10, 1587–1594 (2008).

  5. S. F. Kaplan, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. G. Badalyan, and V. G. Golubev, Photon. Nanostruct. Fundament. Appl., 5, No. 1, 37–43 (2007).

    Article  ADS  Google Scholar 

  6. N. P. Bergeron, W. A. Hollerman, S. M. Goedeke, and R. J. Moore, Int. J. Impact Engineer., 35, No. 12, 1587–1592 (2008).

    Article  Google Scholar 

  7. V. I. Gavrilenko, A. M. Grekhov, D. V. Korbutyak, and V. G. Litovchenko, in M. P. Lisitsa (Ed.), Optical Properties of Semiconductors, Kiev, Naukova Dumka (1987) pp. 385, 418.

  8. S. Shionoya and W. M. Yen (Eds.), Phosphor Handbook, London, CRC Press (1999) pp. 459–487.

    Google Scholar 

  9. Y. Y. Chen, J. G. Duh, B. S. Chiou, and C. G. Peng, Thin Solid Films, 392, No. 1, 50–55 (2001).

    Article  ADS  Google Scholar 

  10. A. A. Bol and A. Meijerink, Phys. Rev. B, 58, No. 24, R15997–R16000 (1998).

    Article  ADS  Google Scholar 

  11. O. V. Salata. J. Nanobiotechnol., 2, No. 3, 3–8 (2004).

  12. M. M. Sychev, K. A. Ogurtsov, V. T. Lebedev, Yu. V. Kul’velis, G. Török, A. E. Sokolov, V. A. Trunov, V. V. Bakhmetyev, A. A. Kotomin, S. A. Dushenok, and A. S. Kozlov, Fiz. Tekh. Poluprovodn., 46, No. 5, 714–718 (2012).

  13. N. T. Gurin, O. Yu Sabitov, and A. M. Afanasyev, Fiz. Tekh. Poluprovodn., 44, No. 4, 517–526 (2010).

    Google Scholar 

  14. N. K. Morozova and V. A. Kuznetsov, in M. V. Fok (Ed.), Zinc Sulfi de. Preparation and Optical Properties, Nauka, Moscow, (1987) pp. 11, 34, 65.

  15. N. K. Morozova, I. A. Karetnikov, V. G. Plotnichenko, E. M. Gavrishchuk, E. V. Yashina, and V. B. Ikonnikov, Fiz. Tekh. Poluprovodn., 38, No. 1, 39–43 (2004).

    Google Scholar 

  16. N. K. Morozova, I. A. Karetnikov, V. V. Blinov, and E. M. Gavrishchuk, Fiz. Tekh. Poluprovodn., 35, No. 1, 25–33 (2001).

    Google Scholar 

  17. H. Iwata, S. Suzuki, and Y. Sasaki, J. Cryst. Growth, 125, Nos. 3–4, 425–430 (1992).

    Article  ADS  Google Scholar 

  18. J. Z. Liu, P. X. Yan, G. H. Yue, L. B. Kong, R. F. Zhuo, and D. M. Qu, Mater. Lett., 60, No. 29–30, 3471–3476 (2006).

    Article  Google Scholar 

  19. H. Schaefer, Chemical Transport Reactions, Mir, Moscow (1964).

  20. X. Wang, J. Shi, Z. Feng, M. Lia, and C. Li, Phys. Chem. Chem. Phys., 13, 4715–4723 (2011).

    Article  Google Scholar 

  21. N. K. Morozova, D. A. Mideros, V. G. Galstyan, and E. M. Gavrishchuk, Fiz. Tekh. Poluprovodn., 42, No. 9, 1039–1045 (2008).

    Google Scholar 

  22. Y. Inubushi, R. Takami, M. Iwasaki, H. Tada, and S. Ito, J. Colloid Interf. Sci., 200, No. 2, 220–227 (1998).

    Article  Google Scholar 

  23. L. Armelao, F. Heigl, S. Brunet, R. Sammynaiken, T. Regier, R. I. R. Blyth, L. Zuin, R. Sankari, J. Vogt, and T. K. Sham, Chem. Phys. Chem., 11, No. 17, 3625–3631 (2010).

    Google Scholar 

  24. W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth, 203, No. 1–2, 186–196 (1999).

    Article  ADS  Google Scholar 

  25. P. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara, J. Cryst. Growth, 201202, 627–632 (1999).

    Article  Google Scholar 

  26. Z. G. Wang, X. T. Zu, S. Zhu, and L. M. Wang, Physica E, 35, No. 1, 199–202 (2006).

    Article  ADS  Google Scholar 

  27. G. Schön, J. Electron Spectr. Relat. Phenom., 2, No. 1, 75–86 (1973).

    Article  Google Scholar 

  28. J. G. Dillard, H. Moers, H. Klewe-Nebenius, G. Kirch, G. Pfennig, and H. Ache, J. Phys. Chem., 88, No. 18, 4104–4111 (1984).

    Article  Google Scholar 

  29. P. M. A. Sherwood, J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys., 72, 1805–1820 (1976).

  30. S. L. Hsu, A. J. Signorelli, G. P. Pey, and R. H. Baughman, J. Chem. Phys., 69, No. 1, 106–111 (1978).

    Article  ADS  Google Scholar 

  31. R. D. Seals, R. Alexander, L. T. Taylor, and J. G. Dillard, Inorg. Chem., 12, No. 10, 2485–2487 (1973).

    Article  Google Scholar 

  32. S. W. Gaarenstroom and N. Winograd, J. Chem. Phys., 67, No. 8, 3500–3506 (1977).

    Article  ADS  Google Scholar 

  33. S. Dutta and B. N. Ganguly, J. Nanobiotechnol., 10, No. 7, 29 (2012).

    Article  Google Scholar 

  34. A. Singh, R. Kumar, N. Malhotra, and Suman, Int. J. Sci. Emerg. Technol. Latest Trends, 4, No. 1, 49–53 (2012).

  35. P. Mitra and S. Mondal, Progr. Theor. Appl. Phys., 1, 17–31 (2013).

    Google Scholar 

  36. I. Uchida, J. Phys. Soc. Jpn., 19, No. 5, 670–674 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  37. R. C. Enck and A. Honig, Phys. Rev., 177, No. 3, 1182–1193 (1969).

    Article  ADS  Google Scholar 

  38. D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, Phys. Rev., 140, No. 1А, А202–А220 (1965).

  39. E. Mihóková, Jarý, L. S. Schulman, and M. Nikl, Phys. Status Solidi RRL, 7, No. 3, 228–231 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Zakirov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 6, pp. 871–879, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakirov, M.I., Korotchenkov, O.A., Kuryliuk, V.V. et al. Spectral-Kinetic Characteristics of ZnS Phosphors Obtained Using the Method of Vapor Transport Synthesis in a Closed System. J Appl Spectrosc 82, 947–955 (2016). https://doi.org/10.1007/s10812-016-0210-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0210-8

Keywords

Navigation