Skip to main content
Log in

Diode-Pumped Nd:KGd(WO4)2 Laser: Lasing at Fundamental and Second Harmonic Frequencies

  • Published:
Journal of Applied Spectroscopy Aims and scope

High-power cw and quasi-cw lasing at the fundamental and second harmonic frequencies is obtained from Nd:KGd(WO 4 ) 2 lasers based on Np- and Ng-cut crystals pumped longitudinally by a diode laser at 879 nm. Because of different crystal lengths, the limiting pump power beyond which the crystals undergo thermomechanical damage is 26.8 W for the N p -cut and 17.3 W for the N g -cut. At these pump powers the cw outputs at λ = 1067.2 nm are 9.4 and 5.4 W, respectively, and the N g -cut crystal output is TEM 00 at the fundamental frequency. With quasicontinuous pumping at a 10% duty cycle the instantaneous laser power reaches ~11 W for both cuts with a periodic duration of 10–20 ms. The differential lasing efficiency relative to the absorbed pump power is 66.4% for cw lasing and 77.4% for quasi-cw operation. With intracavity frequency doubling using a KTP crystal, better results were obtained with the N g -cut crystal because of its simpler thermal lensing. The maximum second harmonic power was ~1.1 W for cw operation and ~2.6 W for quasi-cw operation with a diode laser power of 27.3 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Kaminskii, Crystalline Lasers: Processes and Operating Schemes, CRC Press, Boca Raton, New York, London, Tokyo (1996).

    Google Scholar 

  2. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, Opt. Lett., 22, 1317–1319 (1997).

    Article  ADS  Google Scholar 

  3. V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, Opt. Express, 19, 25279–25289 (2011).

    Article  ADS  Google Scholar 

  4. A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hommerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Levtsova, and F. A. Kuznetsov, Phys. Rev. B, 65, 125108–125129 (2002).

    Article  ADS  Google Scholar 

  5. C. Zaldo, M. Rico, C. Cascales, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, and P. Porcher, J. Phys. Condens. Matter, 12, 8531–8550 (2000).

    Article  ADS  Google Scholar 

  6. A. A. Kaminskii, L. Li, A. V. Butashin, V. S. Mironov, A. A. Pavlyuk, S. N. Bagayev, and K. Ueda, Jpn. J. Appl. Phys., 36, 107–109 (1997).

    Article  ADS  Google Scholar 

  7. S. Bagaev, V. I. Dashkevich, V. A. Orlovich, S. M. Vatnik, A. A. Pavlyuk, and A. M. Yurkin, Kvant. Élektron., 41, 189–192 (2011).

    Article  Google Scholar 

  8. S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, Appl. Opt., 45, 4715–4725 (2006).

    Article  ADS  Google Scholar 

  9. O. Silvestre, M. C. Pujol, F. Guell, M. Aguiló, F. Díaz, A. Brenier, and G. Boulon, Appl. Phys. B, 87, 111–117 (2007).

    Article  ADS  Google Scholar 

  10. D. Hiyan, L. Yujing, X. Zhiguo, and S. Jiayue, J. Rare Earths, 28, 697–700 (2010).

    Article  Google Scholar 

  11. A. Abazadze, G. M. Zverev, Yu. M. Kolbatskov, and N. S. Ustimenko, Kvant. Élektron., 34, 20–22 (2004).

    Article  Google Scholar 

  12. O. Musset and J. P. Boquillon, Appl. Phys. B, 65, 13–18 (1997).

    Article  ADS  Google Scholar 

  13. Y. Kalisky, L. Kravchik, and C. Labbe, Opt. Commun., 189, 113–125 (2001).

    Article  ADS  Google Scholar 

  14. V. Kushawaha, Y. Yan, and Y. Chen, Appl. Phys. B, 62, 533–535 (1996).

    Article  ADS  Google Scholar 

  15. A. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, K. V. Yumashev, N. V. Kuleshov, H. J. Eichler, and M. B. Danailov, Opt. Mater., 16, 349–352 (2001).

    Article  ADS  Google Scholar 

  16. V. G. Savitski, A. M. Malyarevich, K. V. Yumashev, B. D. Sinclair, and A. A. Lipovskii, Appl. Phys. B, 76, 253–256 (2003).

    Article  ADS  Google Scholar 

  17. V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, Appl. Phys. B, 88, 499–501 (2007).

    Article  ADS  Google Scholar 

  18. V. I. Dashkevich, V. A. Orlovich, and A. P. Shkadarevich, Zh. Prikl. Spektrosk., 76, No. 5, 725–732 (2009); JAS 76 (5), 685–691 (2009).

  19. N. S. Ustimenko and E. M. Zabotin, Instr. Exp. Tech., 48, 239–240 (2005).

    Article  Google Scholar 

  20. J. Xia, Y. F. Lü, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, Laser Phys. Lett., 8, 21–23 (2011).

    Article  ADS  Google Scholar 

  21. J. Findeisen, H. J. Eichler, and A. A. Kaminskii, IEEE J. Quantum. Electr., 35, 173–178 (1999).

    Article  ADS  Google Scholar 

  22. A. Demidovich, A. P. Shkadarevich, L. E. Batay, V. P. Gribkovskii, A. N. Kuzmin, G. I. Ryabtsev, W. Strek, and P. J. Deren, Proc. SPIE, 3176, 272–275 (1997).

    Article  ADS  Google Scholar 

  23. M. C. Pujol, J. J. Carvajal, X. Mateos, R. Sole, J. Massons, M. Aguilo, and F. Diaz, J. Lumin., 138, 77–82 (2013).

    Article  Google Scholar 

  24. P. A. Loiko, V. I. Dashkevich, S. N. Bagaev, V. A. Orlovich, A. S. Yasukevich, K. V. Yumashev, N. V. Kuleshov, E. B. Dunina, A. A. Kornienko, S. M. Vatnik, and A. A. Pavlyuk, J. Lumin., 153, 221–226 (2014).

    Article  Google Scholar 

  25. S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, Appl. Phys. Express, 5 (2012); doi: 10.1143/APEX.5.082102.

  26. L. Liu, M. Oka, W. Wiechmann, and S. Kubota, Opt. Lett., 19, 189–191 (1994).

    Article  ADS  Google Scholar 

  27. J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, J. Wang, Y. Liu, and M. Jiang, Opt. Commun., 173, 311–314 (2000).

    Article  ADS  Google Scholar 

  28. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, Advanced Solid-State Photonics 2010, OSA Tech. Dig. paper ATuA22.

  29. H. Aman, B. Hussain, and A. Aman, Front. Optoelectron., 7, 107–109 (2014).

    Article  Google Scholar 

  30. N. Hodson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications, 2nd ed., Springer, USA (2005).

    Google Scholar 

  31. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, V. G. Savitski, S. Calvez, D. Burns, and A. A. Pavlyuk, Opt. Express, 17, 23536–23543 (2009).

    Article  ADS  Google Scholar 

  32. I. V. Molchanov, Opt. Zh., 11, 4–15 (1995).

    Google Scholar 

  33. R. W. Boyd, Nonlinear Optics, 3rd ed., Elsevier, Acad. Press, Amsterdam (2008).

    Google Scholar 

  34. T. Baer, J. Opt. Soc. Am. B, 3, 1175–1180 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. I. Dashkevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 4, pp. 543–550, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, A.A., Dashkevich, U.I., Orlovich, V.A. et al. Diode-Pumped Nd:KGd(WO4)2 Laser: Lasing at Fundamental and Second Harmonic Frequencies. J Appl Spectrosc 82, 578–584 (2015). https://doi.org/10.1007/s10812-015-0148-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0148-2

Keywords

Navigation