Skip to main content

Advertisement

Log in

The Effect of Carbon Nanotube on Band Gap Energy of TiO2 Nanoparticles

  • Published:
Journal of Applied Spectroscopy Aims and scope

A composite of TiO2–carbon nanotubes (CNTs) was synthesized via a sol-gel method. The structure and morphology of the nanocomposite samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical properties of the samples were studied using UV-Vis spectroscopy. The results show that CNTs can decrease the value of band gap energy of TiO2 nanoparticles considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wang, Z. Zhao, J. Qu, Z. Wang, and J. Qiu, J. Phys. Chem. Solids, 71, 673–676 (2010).

    Article  ADS  Google Scholar 

  2. E. T. Thostenson, Z. Ren, and T. W. Chou, Compos. Sci. Tech., 61, 1899–1912 (2001).

    Article  Google Scholar 

  3. F. Gholami-Orimi, F. Taleshi, P. Biparva, H. Karimi-Maleh, H. Beitollahi, H. R. Ebrahimi, M. Shamshiri, H. Bagheri, M. Fouladgar, and A. Taherkhani, J. Anal. Methods Chem., 2012, 798043 (2012); doi:10.1155/2012/902184.

    Article  Google Scholar 

  4. S. Palmas, A. M. Polcaro, J. R. Ruiz, A. D. Pozzo, M. Mascia, and A. Vacca, Int. J. Hydrogen Energy, 35, 6561–6570 (2011).

    Article  Google Scholar 

  5. W. C. Oh, J. Korean Ceram. Soc., 46, 234–239 (2009).

    Article  Google Scholar 

  6. V. Etacheri, M. K. Seery, S. J. Hinder, and S. C. Pillai, Adv. Funct. Mater., 21, 3744–3752 (2011).

    Article  Google Scholar 

  7. A. Ramadoss, K. Krishnamoorthy, and S. Kim, J. Mater. Lett., 75, 215–217 (2012).

    Article  Google Scholar 

  8. E. Weir, A. Lawlor, A. Whelan, and F. Regan, Analyst, 133, 835–845 (2008).

    Article  ADS  Google Scholar 

  9. M. Chen, F. J. Zhang, and W. C. Oh, New Carbon Mater., 24, 159–166 (2009).

    Article  ADS  Google Scholar 

  10. N. Bouazza, M. Ouzzine, M. A. Lillo-Ro-Denas, D. Eder, and A. Linares-Solano, Appl. Catal. B: Environ., 92, 377–383 (2009).

    Article  Google Scholar 

  11. W. Wang, P. Serp, P. Kalck, C. Gomes Silva, and J. Luís Faria, Mater Res. Bull., 43, 958–967 (2008).

    Article  Google Scholar 

  12. H. Yu, X. Quan, S. Chen, H. Zhao, and Y. Zhang, J. Photochem. Photobiol. A: Chemistry, 200, 301–306 (2008).

    Article  Google Scholar 

  13. S. Yuen, C. M. Ma, C. Chuang, Y. Hsiao, C. Chiang, and A. Yu, Composite, A, 39, 119–125 (2008).

    Google Scholar 

  14. H. Milani Moghaddam and S. Nasirian, S. Afr. J. Sci., 107, 1–5 (2011).

    Article  Google Scholar 

  15. P. Vincent, A. Brioude, C. Journet, S. Rabaste, S. T. Purcell, J. Le Brusq, and J. C. Plenet, J. Non-Cryst. Solids, 311, 130–137 (2002).

    Article  ADS  Google Scholar 

  16. H. Y. Chuang and D. H. Chen, Int. J. Hydrogen Energy, 36, 9487–9495 (2011).

    Article  Google Scholar 

  17. H. Omidvar, F. K. Mirzaei, M. H. Rahimi, and Z. Sadeghian, New Carbon Mater., 27, 401–408 (2012).

    Article  Google Scholar 

  18. L. Chen, B. L. Zhang, M. Z. Qu, and Z. L. Yu, Powd. Technol., 154, 70–72 (2005).

    Article  Google Scholar 

  19. A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Béguin, and S. Bonnamy, Carbon, 42, 1147–1151 (2004).

    Article  Google Scholar 

  20. H. Milani Moghaddam and S. Nasirian, Nanosci. Met., 1, 201–212 (2012).

    Article  Google Scholar 

  21. J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press, New York (1974).

    Book  Google Scholar 

  22. H. Tang, H. Berger, P. E. Schmid, F. Levy, and G. Burri, Sol. State Commun., 87, 847–852 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Taleshi.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 2, pp. 284–291, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taleshi, F. The Effect of Carbon Nanotube on Band Gap Energy of TiO2 Nanoparticles. J Appl Spectrosc 82, 303–306 (2015). https://doi.org/10.1007/s10812-015-0102-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0102-3

Keywords

Navigation