Skip to main content
Log in

Multifrequency Lidar Probing of the Microstructure of Multicomponent Urban Aerosols

  • Published:
Journal of Applied Spectroscopy Aims and scope

We consider the inverse problem of recovering the microstructure of multicomponent urban aerosols from lidar signals measured at λ = 0.355, 0.532, 1.064, and 1.5 μm. To solve this problem, we use a regression method based on previously constructed regression relations between the optical and microstructural parameters of the aerosol, and a numerical method including parametrization of the particle size distribution and regularization with selection of the regularization parameter using the residual. With closed numerical modeling, we show that it is possible to recover the mass concentrations of particles of sizes ≤1 μm, ≤2.5 μm, and ≤10 μm (respirable particles). The regression method for solving the inverse problem is significantly more robust than its iterative analog relative to variations in the complex refractive indices of the aerosol components and uncertainties in the optical measurements. We have obtained equations for multiple regressions between the mass concentrations of respirable aerosol fractions and the spectral extinction coefficients of the aerosol, allowing us to interpret the data from multifrequency lidar probing with minimal use of a priori information. We have carried out a numerical experiment on lidar probing of the microstructure of aerosol in the background atmosphere and in a smoke plume using the regressions obtained, demonstrating the possibility of complete automation of the measurement process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Klimenko, V. I. Korolev, and V. I. Shevtsov, Continuous Monitoring of Dust Concentration [in Russian], Tekhnika, Kiev (1980).

    Google Scholar 

  2. N. I. Dudkin and I. S. Adaev, Mir Izmerenii, No. 11, 37–40 (2007).

  3. V. E. Zuev, V. V. Kaul’, and I. V. Samokhvalov, Laser Probing of Industrial Aerosols [in Russian], Nauka, Novosibirsk (1986).

    Google Scholar 

  4. M. Adam, M. Pahlow, V. Kovalev, J. M. Ondov, M. V. Parlange, and N. Nair, J. Geophys. Res., 109, D16S02 (2004). doi:10.1029/2003JD004047.

    ADS  Google Scholar 

  5. V. V. Zavyalov, C. C. Marchant, G. E. Bingham, T. D. Wilkerson, J. L. Hatfi eld, R. S. Martin, P. J. Silva, K. D. Moore, J. Swasey, D. J. Ahlstrom, and T. L. Jones, J. Appl. Remote Sens., 3, No. 1, 033522 (2009).

    Article  ADS  Google Scholar 

  6. G. M. Krekov, S. I. Kavkyanov, and M. M. Krekova, Interpretation of Signals from Optical Probing of the Atmosphere [in Russian], Nauka, Novosibirsk (1987).

    Google Scholar 

  7. V. A. Kovalev and H. Moosmuller, Appl. Opt., 33, No. 27, 6499–6507 (1994).

    Article  ADS  Google Scholar 

  8. A. P. Chaikovskii, A. P. Ivanov, Yu. S. Balin, A. V. El’nikov, G. F. Tulinov, I. I. Plyusnin, O. A. Bukin, and B. B. Chen, Opt. Atm. Okeana, 18, No. 12, 1066–1072 (2005).

    Google Scholar 

  9. S. M. Spuler and S. D. Mayor, in: SPIE Lidar Remote Sensing for Environmental Monitoring VIII, San Diego CA (2007). DOI: 10.1117/12.739519.

  10. M. M. Kugeiko, S. A. Lisenko, and S. M. Kolchinskii, Vesn. Bel. Dzyarzh. Univ. Ser. 1. Fizika. Matematika. Informatika, No. 2, 14–19 (2009).

  11. World Meteorological Organization, World Climate Research Programme: A Preliminary Cloudless Standard Atmosphere for Radiation Computation, Geneva, Switzerland, Report WCP-112, WMO/TD-24 (1986).

  12. V. V. Barun, A. P. Ivanov, F. P. Osipenko, and A. P. Chaikovsky, Proc. SPIE, 3983, 279–289 (1999).

    Article  ADS  Google Scholar 

  13. M. I. Mishcenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, NASA Goddard Institute for Space Studies, New York (2004).

    Google Scholar 

  14. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics, Philadelphia (2005).

    Book  MATH  Google Scholar 

  15. D. K. Zhou, W. L. Smith, X. Liu, A. M. Larar, S. A. Mango, and H. L. Huang, J. Atm. Sci., 64, No. 15, 969–982 (2007).

    Article  ADS  Google Scholar 

  16. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants for Natural and Technical Media: Handbook [in Russian], Khimiya, Leningrad (1984).

    Google Scholar 

  17. V. E. Zuev and G. M. Krekov, Optical Models for the Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1986).

    Google Scholar 

  18. L. S. Ivlev and S. D. Andreev, Optical Properties of Atmospheric Aerosols [in Russian], Izdat. LGU, Leningrad (1986).

    Google Scholar 

  19. G. M. Krekov and S. G. Zvenigorodskii, An Optical Model for the Middle Atmosphere [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  20. G. A. D′Almeida, P. Koepke, and E. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics, A. Deepak Publishing, Hampton USA (1991).

  21. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Watson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer, 60, No. 5, 665–710 (1998).

    Article  ADS  Google Scholar 

  22. K. Ya. Kondrat′ev, N. I. Moskalenko, and D. V. Pozdnyakov, Atmospheric Aerosol [in Russian], Gidrometeoizdat, Leningrad (1983).

    Google Scholar 

  23. S. A. Lisenko and M. M. Kugeiko, Opt. Atm. Okeana, 24, No. 11, 960–968 (2011).

    Google Scholar 

  24. S. A. Lisenko and M. M. Kugeiko, Opt. Atm. Okeana, 27, No. 5, 435–442 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lisenko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 1, pp. 115–123, January–February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisenko, S.A., Kugeiko, M.M. & Khomich, V.V. Multifrequency Lidar Probing of the Microstructure of Multicomponent Urban Aerosols. J Appl Spectrosc 82, 111–119 (2015). https://doi.org/10.1007/s10812-015-0072-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0072-5

Keywords

Navigation