Skip to main content
Log in

Multifrequency lidar sounding of air pollution by particulate matter with separation into respirable fractions

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A technique is considered for retrieving the spatial distributions of respirable fractions of aerosol in the lower atmosphere on the basis of multifrequency lidar sounding data without the use of additional aerosol optical and microphysical parameters along a sounding path. For this purpose, it is suggested to replace the spectral values of the aerosol extinction coefficient involved in lidar equations with the linearly independent parameters of their approximation, and retrieve the spatial distributions of these parameters from the numerical solution of the set of equations composed of all wavelength-time lidar signal samples. As a result, the number of unknowns in the set of equations to be solved is significantly reduced, and its matrix becomes overdetermined, which can be used for selection of physically reasonable values of the aerosol backscattering phase function at the lidar operating wavelengths. An assumption that there are two segments at the sounding path with similar aerosol extinction coefficient profiles is used to determine the lidar calibration constants. An algorithm is suggested for the search for these segments by the wavelength-time structure of a lidar signal. The inverse problem of aerosol light scattering is solved on the basis of stable regression relations between the concentrations of respirable aerosol fractions and approximation parameters of the aerosol extinction spectrum. The stability of the technique developed to the calibration errors and spatial variations in the aerosol backscattering phase function is shown in numerical experiments on laser sounding of aerosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Silva, J. J. West, Y. Zhang, S. C. Anenberg, J. F. Lamarque, D. Shindell, W. J. Collins, S. Dalsoren, G. Faluvegi, G. Folberth, L. W. Horowitz, T. Nagashima, V. Naik, S. Rumbold, R. Skeie, K. Sudo, T. Takemura, D. Bergmann, P. Cameron- Smith, I. Cionni, R. M. Doherty, V. Eyring, B. Josse, I. A. MacKenzie, D. Plummer, M. Righi, D. S. Stevenson, S. Strode, S. Szopa, and G. Zeng, “Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change,” Environ. Res. Lett. 8 (3), 034005 (2013).

    Article  ADS  Google Scholar 

  2. V. E. Zuev, V. V. Kaul’, and I. V. Samokhvalov, Laser Sounding of Industrial Aerosols (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  3. G. M. Krekov, S. I. Kavkyanov, and M. M. Krekova, Interpretation of Atmospheric Optical Sounding Signals (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  4. V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (John Wiley & Sons, Hoboken, New Jersey, 2004).

    Book  Google Scholar 

  5. S. A. Lysenko, M. M. Kugeiko, and V. V. Khomich, “Multifrequency lidar probing of the microstructure of multicomponent urban aerosols”, J. Appl. Spectrosc. 82 (1), 111–119 (2015).

    Article  ADS  Google Scholar 

  6. S. A. Lysenko, M. M. Kugeiko, and V. V. Khomich, “Technique for determining mass concentrations of aerosol fractions in the surface air from multifrequency lidar sounding data,” Atmos. Ocean. Opt. 28 (5), 455–466 (2015).

    Article  Google Scholar 

  7. S. A. Lysenko and M. M. Kugeiko, “Regression approach to analyzing the informativity and interpretation of aerosol optical measurements,” J. Appl. Spectrosc. 76 (6), 826–832 (2009).

    Article  ADS  Google Scholar 

  8. S. A. Lysenko and M. M. Kugeiko, “Retriveal of miscorphysical parameters of stratospheric post-volcanic aerosol from the results of satellite and ground-based multifrequency sounding,” Issled. Zemli Kosmosa, No. 5, 21–33 (2011).

    Google Scholar 

  9. S. A. Lysenko and M. M. Kugeiko, “Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing,” Atmos. Ocean. Opt. 23 (3), 222–228 (2010).

    Article  Google Scholar 

  10. S. A. Lysenko and M. M. Kugeiko, “Determination of the concentration of aerosol particles in a vertical atmospheric column from satellite measurements of the spectral optical depth,” J. Appl. Spectrosc. 78 (5), 738–745 (2011).

    Article  ADS  Google Scholar 

  11. S. A. Lysenko and M. M. Kugeiko, “Nephelometric method for measuring mass concentrations of urban aerosols and their respirable fractions,” Atmos. Ocean. Opt. 27 (6), 587–595 (2014).

    Article  Google Scholar 

  12. J. D. Klett, “Stable analytic inversion solution for processing lidar returns,” Appl. Opt. 20 (2), 211–220 (1981).

    Article  ADS  Google Scholar 

  13. F. G. Fernald, “Analysis of atmospheric lidar observation: Some comments,” Appl. Opt. 23 (5), 652–653 (1984).

    Article  ADS  Google Scholar 

  14. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. António Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43 (4), 977–989 (2004).

    Article  ADS  Google Scholar 

  15. A. M. Obukhov, “About statistically orthogonal expansions of empirical functions,” Izv. Akad. Nauk SSSR, Geofiz, No. 3, 432–439 (1959).

    Google Scholar 

  16. V. E Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  17. Van der Vorst Henk A., Iterative Krylov Methods for Large Linear Systems (Cambridge University Press, Cambridge, 2003).

    MATH  Google Scholar 

  18. A. P. Chaikovskii, A. P. Ivanov, Yu. S. Balin, A. V. El’nikov, G. F. Tulinov, I. I. Plyusnin, O. A. Bukin, B. B. Chen, “CIS-LiNet lidar network for monitoring aerosol and ozone: Methodology and instrumentation,” Atmos. Ocean. Opt. 18 (12), 958–964 (2005).

    Google Scholar 

  19. M. Adam, M. Pahlow, V. Kovalev, J. M. Ondov, M. B. Parlange, and N. Nair, “Aerosol optical characterization by nephelemeter and lidar: The Baltimore Supersite experiment during the Canadian forest fire smoke intrusion,” J. Geophys. Res., D 109 (16) (2004). doi 10.1029/2003JD00404710.1029/2003JD004047

  20. V. V. Zavyalov, C. C. Marchant, G. E. Bingham, T. D. Wilkerson, J. L. Hatfield, R. S. Martin, P. J. Silva, K. D. Moore, J. Swasey, D. J. Ahlstrom, and T. L. Jones, “Aglite lidar: Calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar,” J. Appl. Remote Sens. 3 (1), 033522 (2009).

    Article  ADS  Google Scholar 

  21. T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.-C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in east Asia,” J. Geophys. Res., D 106 (16), 18345–18359 (2001).

    Article  ADS  Google Scholar 

  22. S. A. Lysenko and M. M. Kugeiko, “Retrieval of optical and microphysical characteristics of postvolcanic stratospheric aerosol from the results of three-frequency lidar sensing,” Atmos. Ocean. Opt. 24 (5), 466–477 (2011).

    Article  Google Scholar 

  23. G. M. Krekov, M. M. Krekova, and A. Ya. Sukhanov, “Estimate of perspective white-light lidar efficiency for sensing of the stratus clouds microphysical parameters: 2. Parametric modification of the iteration method lidar equation solution,” Opt. Atmos. Okeana 22 (8), 795–802 (2009).

    Google Scholar 

  24. S. M. Spuler and S. D. Mayor, “Eye-safe aerosol lidar at 1.5 Microns: Progress toward a scanning lidar network,” Proc. SPIE 6681. doi 10.1117/12.739519

  25. H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 µm with an upconversion single-photon detector,” Opt. Lett. 40 (7), 1579–1582 (2015).

    Article  ADS  Google Scholar 

  26. A. Angstrom, “The parameters of atmospheric turbidity,” Tellus 16 (1), 64–75 (1964).

    Article  ADS  Google Scholar 

  27. World Climate Research Programme: A Preliminary Cloudless Standard Atmosphere for Radiation Computation. Report WCP-112, WMO/TD-24 (WMO, Geneva, 1986).

  28. G. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

    Google Scholar 

  29. M. M. Kugeiko and S. A. Lysenko, “Methodological aspects of reconstructing optical characteristics of the atmosphere from data of laser radar measurements,” Atmos. Ocean. Opt. 19 (5), 387–392 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lisenko.

Additional information

Original Russian Text © S.A. Lisenko, M.M. Kugeiko, V.V. Khomich, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisenko, S.A., Kugeiko, M.M. & Khomich, V.V. Multifrequency lidar sounding of air pollution by particulate matter with separation into respirable fractions. Atmos Ocean Opt 29, 288–297 (2016). https://doi.org/10.1134/S1024856016030106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016030106

Keywords

Navigation