Skip to main content
Log in

Growth and structural, optical, and thermal studies of nonlinear optical brucinium hydrogen (S) malate pentahydrate

  • Published:
Journal of Applied Spectroscopy Aims and scope

Brucinium hydrogen (S) malate pentahydrate (BH(S)M), an organic compound, has been synthesized, and BH(S)M single crystals were grown from an ethanol/water solution by slow evaporation of the solvent at room temperature up to dimensions of 15 × 4 × 2 mm3. Single-crystal X-ray diffraction study shows that they belong to a triclinic system (a = 9.342 Å, b = 9.510 Å, c = 16.874 Å, a = 76.61°, b = 89.14°, and g = 81.79°) in a non-centrosymmetric space group P1. Fourier transform infrared (FTIR) spectroscopic study was performed to identify different modes of functional groups present in the compound. The UV-Vis-NIR transmission spectrum has been recorded in a range of 200–1100 nm. It exhibits maximum transparency (87%) in the 425–650 nm range, suggesting the suitability of the title compound for optical applications. The thermal stability of the compound has been determined by TG-DTA curves. Microhardness tests have been performed on the crystal under study, and the Vickers hardness number has been calculated. The work hardening coefficient is found to be 4.2, which suggests that the crystal belongs to the family of soft materials. The SHG efficiency of the crystal was evaluated by the Kurtz powder technique using a Nd:YAG pulsed laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Organic Materials for Nonlinear Optics (Special publications No. 69), Eds. R. A. Hann, and D. Bloor, The Royal Society of Chemistry, London (1989).

  2. J. Badan, R. Hierle, A. Perigaud, and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Polymeric Materials, Ed. D. J. Williams, Am. Chem. Symposium Series, 233, American Chemical Society, Washington DC, 81–107 (1983).

  3. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York (1987).

    Google Scholar 

  4. T. Watabe, K. Kobayashi, I. Hisaki, N. Tohnai, and M. Miyata, Bull. Chem. Soc. Jpn., 80, 464–475 (2007).

    Article  Google Scholar 

  5. R. C. Mehrotra and R. Bohra, Metal Carboxylates, Academic Press, New York (1983).

    Google Scholar 

  6. C. N. R. Rao, S. Natarajan, and R. Vaidhyanathan, Angew. Chem. Int. Ed., 43, 1466–1496 (2004).

    Article  Google Scholar 

  7. R. A. Sheldon and J. K. Kochi, Metal Catalyzed Oxidation of Organic Compounds, Academic Press, New York (1981).

    Google Scholar 

  8. P. G. Lassahn, V. Lozan, G. A. Timco, P. Christian, C. Janiak, and R. E. P. Winpenny, J. Catal., 222, 260–267 (2004).

    Article  Google Scholar 

  9. E. D. Park, Y. S. Hwang, and J. S. Lee, Catal. Commun., 2, 187–190 (2001).

    Article  Google Scholar 

  10. T. Szymanska-Buzar and J. J. Ziolkowski, J. Mol. Catal. A: Сhem., 11, 371–381 (1981).

    Article  Google Scholar 

  11. G. Smith, U. D. Wermuth, and J. M. White, Acta Crystallogr., C62, o353–o357 (2006).

    Google Scholar 

  12. S. K. Kurtz and T. T. Perry, J. Appl. Phys., 39, 3798–3813 (1968).

    Article  ADS  Google Scholar 

  13. N. Sundaraganesan, B. Anand, and B. Dominic Joshua, Spectrochim. Acta, A, 67, 550–558 (2007).

    Article  ADS  Google Scholar 

  14. G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman spectra of Polyatomic Molecules, D. Van Nostrand Company Inc., New York (1966).

  15. N. Seyahan and N. Ege, Organic Chemistry, 2nd ed., DCH and Co., Toronto (1989).

  16. S. Gunasekaran and S. Ponnusamy, Indian J. Pure & Appl. Phys., 43, 838–843 (2005).

    Google Scholar 

  17. D. N. Sathyanarayana, Vibrational Spectroscopy: Theory and Applications, New Age International Publications, New Delhi (1996).

    Google Scholar 

  18. J. R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, Prentice Hall of India Private Ltd., New Delhi ( 2005).

    Google Scholar 

  19. A. K. Chawla, D. Kaur, and R. Chandra, Opt. Mater., 29, 995 (2007).

    Article  ADS  Google Scholar 

  20. R. E. Denton, R. D. Campbell, and S. G. Tomlin, J. Phys. D: Appl. Phys., 5, 852 (1972).

    Article  ADS  Google Scholar 

  21. A. Ashour, N. El-Kadry, and S. A. Mahmoud, Thin Solid Films, 269, 117 (1995).

    Article  ADS  Google Scholar 

  22. M. Dongol, Egypt. J. Solids, 25, 33 (2002).

    Google Scholar 

  23. P. Mythili, T. Kanagasekaran, Shailesh N. Sharma, and R. Gopalakrishnan, J. Cryst. Growth, 306, 344–350 (2007).

    Article  ADS  Google Scholar 

  24. P. M. Ushasree, R. Jayavel, C. Subramanian, and P. Ramasamy, Bull. Electrochem., 14, 407–410 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Anbalagan.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 2, pp. 183–190, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gayathri, K., Krishnan, P., Kanagathara, N. et al. Growth and structural, optical, and thermal studies of nonlinear optical brucinium hydrogen (S) malate pentahydrate. J Appl Spectrosc 80, 176–183 (2013). https://doi.org/10.1007/s10812-013-9742-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-013-9742-3

Keywords

Navigation