Skip to main content
Log in

Localized light absorption by hemoglobins of an erythrocyte suspension

  • Published:
Journal of Applied Spectroscopy Aims and scope

A correction factor accounting for the differences between the absorption spectra of an erythrocyte suspension and hemolyzed blood (hemoglobin solution) has been calculated. Erythrocytes and their aggregates are simulated by “soft” cylindrical (disk-shaped) particles. The anomalous diffraction approximation is used. At equal absorbing mass, the absorption coefficient of the suspension in the blue spectral region is shown to be capable of being several times lower than that of the solution due to localization of the absorber in erythrocytes. The hemoglobin localization effect is less important for λ em > 600 nm. Approximate analytical equations that are valid for cylindrical particles with a length-to-diameter ratio l/d > 3–4 are proposed for calculating the correction factor. More cumbersome formulas of anomalous diffraction must be used at smaller l/d values. It is shown that these formulas transform at the limit into the analytical equations. The spectra of the correction factor for cylindrical and spherical particles are compared. The simple approximation for spherical particles is demonstrated to work well for rather long aggregates when the cylinder volume-to-surface area ratio is the same as for a spherical particle. The results can be used to solve various problems of erythrocyte optics, e.g., to reproduce sizes of aggregates by measuring their spectral absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zwart, A. Buursma, E. J. van Campen, and W. G. Zijlstra, Clin. Chem., 30, 373–379 (184).

    Google Scholar 

  2. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, Clin. Chem., 37, 1633–1638 (1991).

    Google Scholar 

  3. W. G. Zijlstra and A. Buursma, Clin. Chem., 39, 1685–1689 (1993).

    Google Scholar 

  4. A. Ya. Khairullina, T. V. Oleinik, L. M. Bui, N. I. Artishevskaya, N. P. Prigun, Ya. I. Sevkovskii, T. V. Mokhort, and M. A. Savchenko, Opt. Zh., 64, 34–38 (1997).

    Google Scholar 

  5. A. Ya. Khairullina and S. F. Shumilina, Zh. Prikl. Spektrosk., 19, No. 3, 538–544 (1973).

    Google Scholar 

  6. M. Meinke, G. Muller, J. Helfmann, and M. Friebel, J. Biomed. Opt., 12, 014024-1–014024-9 (2007).

    Article  ADS  Google Scholar 

  7. L. Rossi-Bernardi, M. Perrella, M. Luzzana, M. Samaja, and I. Raffaele, Clin. Chem., 23, 1215–1225 (1977).

    Google Scholar 

  8. E. Beutler and C. West, Clin. Chem., 30, 871–874 (1984).

    Google Scholar 

  9. G. S. Dubova, A. A. Koldaev, and A. Ya. Khairullina, "Method for determining relative concentrations of hemoglobin derivatives," USSR Pat. No. 1,613,953 (1990).

  10. A. Ya. Khairullina and E. K. Naumenko, Proc. SPIE, 2082, 205–211 (1993).

    Article  ADS  Google Scholar 

  11. E. K. Naumenko, Zh. Prikl. Spektrosk., 63, No. 1, 60–66 (1996).

    MathSciNet  Google Scholar 

  12. K. S. Shifrin, Introduction to Optics of the Ocean [in Russian], Gidrometeoizdat, Leningrad (1983).

    Google Scholar 

  13. V. N. Lopatin and F. Ya. Sid’ko, Introduction to Optics of Cell Suspensions [in Russian], Nauka, Novosibirsk (1988).

    Google Scholar 

  14. I. V. Meglinskii, Kvantovaya Élektron., 31, 1101–1107 (2001).

    Article  Google Scholar 

  15. H. C. van de Hulst, Light Scattering by Small Particles, Wiley, New York (1957).

    Google Scholar 

  16. A. G. Petrushin, Opt. Spektrosk., 54, 882–884 (1983).

    Google Scholar 

  17. V. N. Lopatin and F. Ya. Sid’ko, Opt. Spektrosk., 61, 430–432 (1983).

    Google Scholar 

  18. E. K. Naumenko, Zh. Prikl. Spektrosk., 70, No. 3, 375–380 (2003).

    Google Scholar 

  19. L. O. Svaasand, E. J. Fiskerstrand, G. Kopstad, L. T. Norwang, E. K. Svaasand, J. S. Nelson, and M. W. Berns, Lasers Med. Sci., 10, 235–234 (1995).

    Article  Google Scholar 

  20. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, Med. Phys., 22, 1209–1217 (1995).

    Article  Google Scholar 

  21. W. Vercruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, Phys. Med. Biol., 42, 51–65 (1997).

    Article  Google Scholar 

  22. M. Firbank, E. Okada, and D. T. Delpy, Phys. Med. Biol., 42, 465–467 (1997).

    Article  Google Scholar 

  23. A. Talsma, B. Chance, and R. Graaff, J. Opt. Soc. Am. A, 18, 932–939 (2001).

    Article  ADS  Google Scholar 

  24. R. L. P. van Veen, W. Vercruysse, and H. J. C. M. Sterenborg, Opt. Lett., 27, 246–248 (2002).

    Article  ADS  Google Scholar 

  25. V. V. Barun and A. P. Ivanov, Opt. Spektrosk., 96, 1019–1024 (2004).

    Article  Google Scholar 

  26. A. P. Ivanov and V. V. Barun, Opt. Spektrosk., 104, 344–351 (2008).

    Google Scholar 

  27. J. C. Finlay and T. H. Foster, Opt. Lett., 29, 965–967 (2004).

    Article  ADS  Google Scholar 

  28. L. N. M. Duysens, Biochim. Biophys. Acta, 19, 1–12 (1956).

    Article  Google Scholar 

  29. V. V. Barun and A. P. Ivanov, in: Proc. Xth Conf. Electromag. Light Scat., Bodrum, Turkey (2007), 5–8.

  30. I. A. Kassirskii and G. A. Alekseev, Clinical Hemotology [in Russian], Meditsina, Moscow (1970).

    Google Scholar 

  31. V. A. Levtov, S. A. Regirer, and N. Kh. Shadrina, Blood Rheology [in Russian], Meditsina, Moscow (1982).

    Google Scholar 

  32. M. Meinke, M. Friebel, and G. Muller, Proc. SPIE, 6629, 6629-1–6629-10 (2007).

    Google Scholar 

  33. M. Friebel, J. Helfmann, G. Muller, and M. Meinke, J. Biomed. Opt., 12, 054005-1–054005-8 (2007).

    Article  ADS  Google Scholar 

  34. J. Lister, Philos. Trans. R. Soc. London, 148, 645–702 (1859).

    Google Scholar 

  35. A. L. Chizhevskii, Structural Analysis of Flowing Blood [in Russian], Izd. Akad. Nauk SSSR, Moscw (1959).

    Google Scholar 

  36. E. K. Naumenko, "Change of blood optical properties upon erythrocyte aggregation," Preprint Inst. Phys. Nat. Acad. Sci. Belarus, Minsk (2002), No. 736.

  37. G. S. Dubova, A. Ya. Khairullina, and S. F. Shumilina, Zh. Prikl. Spektrosk., 27, No. 5, 871–878 (1977).

    Google Scholar 

  38. G. S. Dubova, A. Ya. Khairullina, and S. F. Shumilina, Zh. Prikl. Spektrosk., 34, No. 6, 1058–1064 (1981).

    Google Scholar 

  39. A. Ya. Khairullina, in: Light Propagation in a Dispersed Medium [in Russian], A. P. Ivanov, ed., Nauka i Tekhnika, Minsk (1982), 275–292.

    Google Scholar 

  40. E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer in a Scattering Medium [in Russian], Nauka i Tekhnika, Minsk (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Barun.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 4, pp. 516–524, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barun, V.V., Ivanov, A.P. Localized light absorption by hemoglobins of an erythrocyte suspension. J Appl Spectrosc 76, 487–496 (2009). https://doi.org/10.1007/s10812-009-9234-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-009-9234-7

Key words

Navigation