Skip to main content
Log in

Generation of acoustically distributed feedback lasers based on gyrotropic crystals

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

Oscillation conditions were determined for acoustically distributed feedback (ADFB) lasers based on gyrotropic uniaxial and cubic crystals. The lasing threshold was shown to be higher for the modes with clockwise polarization than for those with counterclockwise polarization. It is established that the regions of maximal amplification for clockwise (counterwise) waves of the gyrotropic crystal are displaced in the direction of decreased (increased) phase detuning, respectively, relative to amplification regions that correspond to the absence of crystal gyrotropy. The ADFB laser was shown to be capable of generating at the Bragg frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Kizel’ and V. I. Burkov, Gyrotropic Crystals [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  2. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley, New York (1984).

    Google Scholar 

  3. A. A. Kaminskii, S. N. Bagaev, and Kh. Garsia-Zole, Kvant. Élektron., 26, No. 1, 6–8 (1999).

    Article  Google Scholar 

  4. G. A. Lyakhov, Yu. P. Svirko, and N. V. Suz’ko, Kvant. Élektron., 20, No. 10, 941–968 (1993).

    Google Scholar 

  5. A. A. Afanas’ev, V. M. Volkov, A. N. Rubinov, and T. Sh. Efendiev, Kvant. Élektron., 29, No. 2, 123–126 (1999).

    Google Scholar 

  6. Yu. V. Gulyaev and G. N. Shkerdin, Radiotekhn. Élektron., 28, No. 7, 1299–1305 (1983).

    ADS  Google Scholar 

  7. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics [in Russian], Nauka, St. Petersburg (1992).

    Google Scholar 

  8. E. M. Khramovich and V. V. Shepelevich, Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Mat. Navuk, No. 2, 106–112 (1987).

  9. G. V. Kulak, Pis’ma Zh. Tekh. Fiz., 27, No. 9, 25–30 (2001).

    Google Scholar 

  10. F. I. Fedorov, Theory of Gyrotropy [in Russian], Nauka i Tekhnika, Minsk (1976).

    Google Scholar 

  11. M. P. Shaskol’skaya, ed., Acoustic Crystals [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  12. G. V. Kulak, Principles of Acousto-optics of Gyrotropic Crystals [in Russian], Izd. Tsentr BGU, Minsk (2005).

    Google Scholar 

  13. M. Vallet, M. Brunel, F. Bretenaker, et al., Appl. Phys. Lett., 74, No. 22, 3266–3268 (1999).

    Article  ADS  Google Scholar 

  14. G. V. Kulak, Zh. Prikl. Spektrosk., 68, No. 4, 496–500 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Nikolaenko.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 3, pp. 331–335, May–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaenko, T.V. Generation of acoustically distributed feedback lasers based on gyrotropic crystals. J Appl Spectrosc 75, 348–352 (2008). https://doi.org/10.1007/s10812-008-9052-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-008-9052-3

Key words

Navigation