Skip to main content
Log in

Solvatochromic shift of the 0-0 phosphorescence band and change of polarizability in the a 1δgX 3Σ g -transition in the oxygen molecule

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

We used known experimental data to analyze the influence of intermolecular interactions on the position of the 0-0-band a1Δg → X3Σ g phosphorescence of molecular oxygen in solutions. A bathochromic (red) shift caused by dispersion interactions and fluctuations of the internal electric field (induction effect) is analyzed employing new formulas obtained by us in the framework of the Onsager model. The contributions from intermolecular repulsion and higher multipole interactions to the shift of the spectrum are also discussed. It is found that the polarizability in the a1Δg state is higher than in the X3Σ t-g state by 0.19 ± 0.03 Å3. Taking into account the induced nature of O2 phosphorescence in solutions, it is noted that the change of polarizability Δαeg = 0.19 Å3 should differ from the change of Δαeg inherent in free molecular oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Schmidt and H. D. Brauer, J. Am. Chem. Soc., 109, 6976–6980 (1987).

    Article  Google Scholar 

  2. A. Bromberg and C. S. Foote, J. Phys. Chem., 93, 3968–3969 (1989).

    Article  Google Scholar 

  3. I. M. Byteva, G. P. Gurinovich, A. P. Losev, and A. V. Mudryi, Opt. Spektrosk., 68, 545–548 (1990).

    Google Scholar 

  4. A. N. Macpherson, T. G. Truscott, and P. H. Turner, J. Chem. Soc., Faraday Trans., 90, 1065–1072 (1994).

    Article  Google Scholar 

  5. J. M. Wessels and M. A. J. Rodgers, J. Phys. Chem., 99, 17,586–17,592 (1995).

  6. R. Schmidt, J. Phys. Chem., 100, 8049–8052 (1996).

    Article  Google Scholar 

  7. T. D. Poulsen, P. R. Ogilby, and K. V. Mikkelsen, J. Phys. Chem., 102, 8970–8973 (1998).

    Google Scholar 

  8. T. D. Poulsen, P. R. Ogilby, and K. V. Mikkelsen, J. Phys. Chem., 103, 3418–3422 (1999).

    Google Scholar 

  9. F. London, Trans. Faraday Soc., 33, 8–26 (1937).

    Article  Google Scholar 

  10. K.-P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, 4: constants of Diatomic Molecules, Van Nostrand Reinhold, New York (1979).

    Google Scholar 

  11. A. Bondi, J. Phys. Chem., 68, 441–451 (1964).

    Article  Google Scholar 

  12. Ya. I. Frenkel’, Collection of Selected Works. Vol. 3. Kinetic Theory of Liquids [in Russian], Izdat. Akad. Nauk SSSR, Moscow-Leningrad (1959), Chap. 4.

    Google Scholar 

  13. L. Onsager, J. Am. Chem. Soc., 58, 1486–1493 (1936).

    Article  Google Scholar 

  14. P. Suppan, J. Photochem. Photobiol. A: Chem., 50, 293–330 (1990).

    Article  Google Scholar 

  15. V. S. Pavlovich, Zh. Prikl. Spektrosk., 74, 162–168 (2007).

    Google Scholar 

  16. V. S. Pavlovich, Dokl. Akad. Navuk BSSR, 31, 412–415 (1987).

    Google Scholar 

  17. V. S. Pavlovich, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, No. 6, 55–61 (1987).

  18. Chemistry Handbook [in Russian], GNTI Khim. Lit., Leningrad-Moscow (1962), 329–332, 948–959.

  19. Ya. Yu. Akhadov, Dielectric Properties of Pure Liquids [in Russian], Izdat. Standartov, Moscow (1972), 64–98.

    Google Scholar 

  20. Wikipedia, The Free Encyclopedia (http://en.wikipedia.org/).

  21. F. X. Hassion and R. H. Cole, J. Chem. Phys., 23, 1756–1761 (1955).

    Article  ADS  Google Scholar 

  22. W. Dennhauser and R. H. Cole, J. Chem. Phys., 23, 1762–1766 (1955).

    Article  ADS  Google Scholar 

  23. D. J. Denney and R. H. Cole, J. Chem. Phys., 23, 1767–1772 (1955).

    Article  ADS  Google Scholar 

  24. Krishnaji and A. Mansingh, J. Chem. Phys., 41, 827–831 (1964).

    Article  ADS  Google Scholar 

  25. G. Zundel, Hydration and Intermolecular Interaction; Infrared Investigations with Polyelectrolyte Membranes, Academic, New York (1969).

    Google Scholar 

  26. J. Wildt, E. H. Fink, P. Biggs, R. P. Wayne, and A. F. Vilesov, Chem. Phys., 159, 127–140 (1992).

    Article  Google Scholar 

  27. R. Schmidt, F. Shafii, and M. Hild, J. Phys. Chem., 103, 2599–2605 (1999).

    Google Scholar 

  28. C. Schweitzer and R. Schmidt, Chem. Rev., 103, 1685–1757 (2003).

    Article  Google Scholar 

  29. B. F. Minaev, S. Lunell, and G. I. Kobzev, J. Mol. Struct. (THEOCHEM), 284, 1–9 (1993).

    Article  Google Scholar 

  30. B. F. Minaev, Zh. Prikl. Spektrosk., 42, 766–772 (1985).

    Google Scholar 

  31. S. P. McGlynn, T. Azumi, and M. Kinosita, Molecular Spectroscopy of the Triplet State, Prentice-Hall International Series in Chemistry, Prentice-Hall, Englewood Cliffs, N. J. (1969), Chap. 8.

    Google Scholar 

  32. K. G. Denbigh, Trans. Faraday Soc., 36, 936–948 (1940).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Pavlovich.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 4, pp. 453–459, July–August, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlovich, V.S. Solvatochromic shift of the 0-0 phosphorescence band and change of polarizability in the a 1δgX 3Σ g -transition in the oxygen molecule. J Appl Spectrosc 74, 501–507 (2007). https://doi.org/10.1007/s10812-007-0080-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-007-0080-1

Key words

Navigation