Skip to main content
Log in

Influence of Zinc Ions on the Geminal and Bimolecular Stages of the Horse-Myoglobin Oxygenation

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

The kinetics of nanosecond geminal recombination and bimolar association of molecular oxygen with the horse-heart myoglobin has been investigated by laser flash photolysis. The influence of Zn(II) ions on the dioxygenation and rebonding of myoglobin to a ligand has been considered. The kinetics of the geminal recombination was analyzed within the framework of the model of four states with a side path of ligand motion in the protein matrix. It is shown that an increase in the affinity of myoglobin to O2 in the presence of Zn(II) ions is predominantly caused by an increase in the rate constant of recombination of molecular oxygen from the primary intraprotein site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Wittenberg, Physiol. Rev., 50, 559–636 (1970).

    Google Scholar 

  2. B. A. Springer, S. G. Sligar, J. S. Olson, and G. N. Phillips, Chem. Rev., 94, 699–714 (1994).

    Article  Google Scholar 

  3. M. Brunori, Trends Biochem. Sci., 26, 21–23 (2001).

    Google Scholar 

  4. M. W. J. Cleeter, J. M. Cooper, V. M. Darley-Usmar, S. Moncada, and A. H. V. Schapira, FEBS Lett., 345, 50–54 (1994).

    Article  Google Scholar 

  5. S. Herold, FEBS Lett., 443, 81–84 (1999).

    Google Scholar 

  6. Q. H. Gibson, Biochem. J., 71, 293–303 (1959).

    Google Scholar 

  7. R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus, Biochemistry, 14, 5355–5373 (1975).

    Article  Google Scholar 

  8. E. E. Scott and Q. H. Gibson, Biochemistry, 36, 11909–11917 (1997).

    Article  Google Scholar 

  9. G. Eichhorn (Ed.), Inorganic Biochemistry [Russian translation], Vols. 1, 2, Mir, Moscow (1978).

    Google Scholar 

  10. P. T. Manoharan, K. Alson, and J. M. Rifkind, Biochemistry, 28, 7148–7153 (1989).

    Article  Google Scholar 

  11. E. A. Skekhovtsova, E. V. Goraev, V. S. Sivozhelezov, and G. B. Postnikov, Biofizika, 50, 39–48 (2005).

    Google Scholar 

  12. L. J. Banaszak, H. C. Watson, and J. C. Kendrew, J. Mol. Biol., 12, 130–137 (1965).

    Article  Google Scholar 

  13. E. Breslow and F. R. N. Gurd, J. Biol. Chem., 238, 1332–1342 (1963).

    Google Scholar 

  14. J. M. Rifkind, M. H. Keyes, and R. Lumry, Biochemistry, 16, 5564–5568 (1977).

    Google Scholar 

  15. J. R. Cann, Biochemistry, 3, 714–722 (1964).

    Google Scholar 

  16. S. V. Evans and G. D. Brayer, J. Biol. Chem., 263, 4263–4268 (1988).

    Google Scholar 

  17. S. V. Lepeshkevich, J. Karpiuk, I. V. Sazanovich, and B. M. Dzhagarov, Biochemistry, 43, 1675–1684 (2004).

    Article  Google Scholar 

  18. B. M. Dzhagarov and S. V. Lepeshkevich, Chem. Phys. Lett., 390, 59–64 (2004).

    Article  ADS  Google Scholar 

  19. S. Hirota, T. Li, G. N. Fillips Jr, J. S. Olsen, M. Mukai, and T. Kitagawa, J. Am. Chem. Soc., 118, 7845–7846 (1996).

    Article  Google Scholar 

  20. M. D. Chatfeld, K. N. Walda, and D. Magde, J. Am. Chem. Soc., 112, 4680–4687 (1990).

    Google Scholar 

  21. X. Ye, A. Demidov, and P. M. Champion, J. Am. Chem. Soc., 124, 5914–5924 (2002).

    Google Scholar 

  22. B. M. Dzhagarov, V. A. Galievskii, N. N. Kruk, and M. D. Yakutovich, Dokl. Ross. Akad. Nauk, 366, 121–124 (1999).

    Google Scholar 

  23. E. E. Scott, Q. H. Gibson, and J. S. Olson, J. Biol. Chem., 276, 5177–5188 (2001).

    Google Scholar 

  24. K. Nienhaus, P. Deng, J. S. Olson, J. J. Warren, and G. U. Nienhaus, J. Biol. Chem., 278, 42532–42544 (2003).

    Article  Google Scholar 

  25. R. Elber and M. Karpius, J. Am. Chem. Soc., 112, 9161–9175 (1990).

    Article  Google Scholar 

  26. R. F. Tilton, Jr, I. D. Kuntz, Jr, and G. A. Petsko, Biochemistry, 23, 2849–2857 (1984).

    Article  Google Scholar 

  27. D. Bourgeois, B. Vallone, F. Schotte, A. Arcovito, A. E. Miele, G. Sciara, M. Wulff, P. Anfinrud, and M. Brunoni, Proc. Natl. Acad. Sci. USA, 100, 8704–8709 (2003).

    Article  ADS  Google Scholar 

  28. S. Franzen, B. Bohr, C. Poyart, and J. L. Martin, Biochemistry, 34, 1224–1237 (1995).

    Article  Google Scholar 

  29. U. Samuni, D. Dantsker, A. Ray, J. B. Wittenberg, B. A. Wittenberg, D. Dewilde, L. Moens, Y. Oucllet, M. Guertin, and J. M. Friedman, J. Biol. Chem., 278, 27241–27250 (2003).

    Article  Google Scholar 

  30. D. G. Lambright, S. Balasubramanian, S. M. Decatur, and S. G. Boxer, Biochemistry, 33, 5518–5525 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Dzhagarov.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 5, pp. 670–677, September–October, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepeshkevich, S.V., Poznyak, A.L. & Dzhagarov, B.M. Influence of Zinc Ions on the Geminal and Bimolecular Stages of the Horse-Myoglobin Oxygenation. J Appl Spectrosc 72, 735–743 (2005). https://doi.org/10.1007/s10812-005-0141-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-005-0141-2

Keywords

Navigation