Skip to main content
Log in

Molecular Oxygen Migration in Isolated β-Chains of Human Hemoglobin as Revealed by Molecular Dynamics Simulations and Laser Kinetic Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Molecular oxygen (O2) migration in isolated β-chains of human hemoglobin was studied using molecular dynamics simulations and laser kinetic absorption spectroscopy. Insertion of xenon (Xe) atoms into the isolated chains was found to decrease the time constant of the slowest component of geminal O2 rebinding to the protein. This change was caused by a decrease in the intra-protein space available for O2 migration after insertion of the inert gas into the Xe-binding sites of the protein. Molecular dynamics simulations revealed that the O2 molecule occupied both the Xe2 and Xe1 sites of the protein during geminal recombination to the isolated β-chains. The amino acids involved in formation of the primary and secondary docking sites of the protein were determined. The results are important for understanding the mechanism of O2 binding by both native tetrameric human hemoglobin and artificial oxygen carriers based on heme proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Antonini and M. Brunori, Hemoglobin and Myoglobin in their Reactions with Ligands, North-Holland Publication Company, Amsterdam, London (1971).

    Google Scholar 

  2. M. F. Perutz, Nature, 228, 726–739 (1970).

    Article  ADS  Google Scholar 

  3. Q. H. Gibson, Biochem. J., 71, 293–303 (1959).

    Article  Google Scholar 

  4. J. S. Philo and J. W. Lary, J. Biol. Chem., 265, 139–143 (1990).

    Article  Google Scholar 

  5. I. Birukou, R. L. Schweers, and J. S. Olson, J. Biol. Chem., 285, 8840–8854 (2010).

    Article  Google Scholar 

  6. S. V. Lepeshkevich, N. V. Konovalova, and B. M. Dzhagarov, Biochemistry (Moscow), 68, No. 5, 551–558 (2003).

  7. B. M. Dzhagarov and S. V. Lepeshkevich, Chem. Phys. Lett., 390, Nos. 1–3, 59–64 (2004).

    Article  ADS  Google Scholar 

  8. S. V. Lepeshkevich, N. V. Konovalova, I. I. Stepuro, and B. M. Dzhagarov, J. Mol. Struct., 735736, 307–313 (2005).

    Article  ADS  Google Scholar 

  9. S. V. Lepeshkevich and B. M. Dzhagarov, FEBS J., 272, No. 23, 6109–6119 (2005).

    Article  Google Scholar 

  10. D. A. Duddell, R. J. Morris, N. J. Muttucumaru, and J. T. Richards, Photochem. Photobiol., 31, 479–484 (1980).

    Article  Google Scholar 

  11. R. J. Morris, Q. H. Gibson, M. Ikeda-Saito, and T. Yonetani, J. Biol. Chem., 259, 6701–6703 (1984).

    Article  Google Scholar 

  12. D. A. Chernoff , R. M. Hochstrasser, and A. W. Steele, Proc. Natl. Acad. Sci. USA, 77, 5606–5610 (1980).

    Article  ADS  Google Scholar 

  13. B. M. Dzhagarov, V. A. Galievsky, N. N. Kruk, and M. D. Yakutovich, Dokl. Akad. Nauk, 366, 38–41 (1999).

    Google Scholar 

  14. S. V. Lepeshkevich, J. Karpiuk, I. V. Sazanovich, and B. M. Dzhagarov, Biochemistry, 43, No. 6, 1675–1684 (2004).

    Article  Google Scholar 

  15. Q. H. Gibson, Biochemistry, 38, No. 16, 5191–5199 (1999).

    Article  Google Scholar 

  16. W. A. Eaton, L. K. Hanson, P. J. Stephens, J. C. Sutherland, and J. B. R. Dunn, J. Am. Chem. Soc., 100, No. 16, 4991–5003 (1978).

    Article  Google Scholar 

  17. B. I. Greene, R. M. Hochstrasser, R. B. Weisman, and W. A. Eaton, Proc. Natl. Acad. Sci. USA, 75, No. 11, 5255–5259 (1978).

    Article  ADS  Google Scholar 

  18. S. V. Lepeshkevich, I. V. Sazanovich, M. V. Parkhats, S. N. Gilevich, and B. M. Dzhagarov, Chem. Sci., 12, No. 20, 7033–7047 (2021).

    Article  Google Scholar 

  19. A. Pesce, M. Nardini, S. Dewilde, L. Capece, M. A. Marti, S. Congia, M. D. Salter, G. C. Blouin, D. A. Estrin, P. Ascenzi, L. Moens, M. Bolognesi, and J. S. Olson, J. Biol. Chem., 286, 5347–5358 (2011).

    Article  Google Scholar 

  20. B. A. Springer, S. G. Sligar, J. S. Olson, and G. N. Phillips, Jr., Chem. Rev., 94, 699–714 (1994).

    Article  Google Scholar 

  21. J. M. Friedman, Science, 228, 1273–1280 (1985).

    Article  ADS  Google Scholar 

  22. C. Savino, A. E. Miele, F. Draghi, K. A. Johnson, G. Sciara, M. Brunori, and B. Vallone, Biopolymers, 91, No. 12, 1097–1107 (2009).

    Article  Google Scholar 

  23. S. V. Lepeshkevich, S. A. Biziuk, A. M. Lemeza, and B. M. Dzhagarov, Biochim. Biophys. Acta, 1814, No. 10, 1279–1288 (2011).

    Article  Google Scholar 

  24. M. F. Lucas and V. Guallar, Biophys. J., 102, 887–896 (2012).

    Article  ADS  Google Scholar 

  25. M. S. Shadrina, G. H. Peslherbe, and A. M. English, Biochemistry, 54, 5268–5278 (2015).

    Article  Google Scholar 

  26. M. S. Shadrina, A. M. English, and G. H. Peslherbe, J. Am. Chem. Soc., 134, 11177–11184 (2012).

    Article  Google Scholar 

  27. M. Takayanagi, I. Kurisaki, and M. Nagaoka, J. Phys. Chem. B, 117, 6082–6091 (2013).

    Article  Google Scholar 

  28. S. V. Lepeshkevich, S. N. Gilevich, M. V. Parkhats, and B. M. Dzhagarov, Biochim. Biophys. Acta, 1864, No. 9, 1110–1121 (2016).

    Article  Google Scholar 

  29. E. Bucci and C. Fronticelli, J. Biol. Chem., 240, 551–552 (1965).

    Article  Google Scholar 

  30. R. C. Neuman, Jr., W. Kauzmann, and A. Zipp, J. Phys. Chem., 77, 2687–2691 (1973).

    Article  Google Scholar 

  31. S. V. Lepeshkevich and B. M. Dzhagarov, Biochim. Biophys. Acta, 1794, 103–109 (2009).

    Article  Google Scholar 

  32. S. V. Lepeshkevich, M. V. Parkhats, A. S. Stasheuski, V. V. Britikov, E. S. Jarnikova, S. A. Usanov, and B. M. Dzhagarov, J. Phys. Chem. A, 118, No. 10, 1864–1878 (2014).

    Article  Google Scholar 

  33. S. V. Lepeshkevich, A. L. Poznyak, and B. M. Dzhagarov, J. Appl. Spectrosc., 72, No. 5, 735–743 (2005).

    Article  ADS  Google Scholar 

  34. S. V. Lepeshkevich, M. V. Parkhats, I. I. Stepuro, and B. M. Dzhagarov, Biochim. Biophys. Acta, 1794, No. 12, 1823–1830 (2009).

    Article  Google Scholar 

  35. H. J. C. Berendsen, D. Van der Spoel, and R. Van Drunen, Comput. Phys. Commun., 91, 43–56 (1995).

    Article  ADS  Google Scholar 

  36. D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem., 26, 1701–1719 (2005).

    Article  Google Scholar 

  37. E. Lindahl, B. Hess, and D. Van der Spoel, J. Mol. Model., 7, 306–317 (2001).

    Article  Google Scholar 

  38. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics, 14, 33–38 (1996).

    Article  Google Scholar 

  39. Y. Cheng, T.-J. Shen, V. Simplaceanu, and C. Ho, Biochemistry, 41, 11901–11913 (2002).

    Article  Google Scholar 

  40. I. Birukou, J. Soman, and J. S. Olson, J. Biol. Chem., 286, 10515–10529 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Lepeshkevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 3, pp. 361–369, May-June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepeshkevich, S.V., Parkhats, M.V., Biziuk, S.A. et al. Molecular Oxygen Migration in Isolated β-Chains of Human Hemoglobin as Revealed by Molecular Dynamics Simulations and Laser Kinetic Spectroscopy. J Appl Spectrosc 90, 485–492 (2023). https://doi.org/10.1007/s10812-023-01557-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01557-z

Keywords

Navigation