Skip to main content
Log in

Enhancing lipid productivity in Nannochloropsis salina by overexpression of endogenous glycerol-3-phosphate dehydrogenase

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae have emerged as a promising feedstock for the sustainable production of lipid-based products, including biofuels and omega-3 fatty acids, by utilizing CO2 as a carbon source. Glycerol-3-phosphate dehydrogenase (GPDH) is a vital enzyme in microalgal lipid synthesis, converting dihydroxyacetone phosphate into glycerol-3-phosphate, the initial substrate for the Kennedy pathway responsible for triacylglycerol production. In this study, we identified and overexpressed a chloroplastic NAD(P)+-dependent GPDH (NsGPDH1) in Nannochloropsis salina. Quantitative reverse transcription polymerase chain reaction and western blotting revealed increased NsGPDH1 expression in the transformants as compared to wild-type N. salina. This overexpression of NsGPDH1 resulted in increased glycerol production and a higher proportion of mono-unsaturated fatty acids, which are indicative of GPDH overexpression. Notably, lipid productivity in NsGPDH1-overexpressing N. salina strains increased by 40% without significant growth defects. These results highlight the effectiveness of NsGPDH1 overexpression as a strategy for enhancing lipid biosynthesis in N. salina, contributing to the advancement of microalgae-based lipid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Available data are provided in the publication. All other relevant data are available from the corresponding authors upon reasonable request.

Reference

  • Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J 13:540–550

    CAS  PubMed  Google Scholar 

  • Ajjawi I, Verruto J, Aqui M, Soriaga LB, Coppersmith J, Kwok K, Peach L, Orchard E, Kalb R, Xu WD, Carlson TJ, Francis K, Konigsfeld K, Bartalis J, Schultz A, Lambert W, Schwartz AS, Brown R, Moellering ER (2017) Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol 35:647–652

    CAS  PubMed  Google Scholar 

  • AlishahAratboni H, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramirez JR (2019) Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact 18:178

    Google Scholar 

  • AlmagroArmenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423

    CAS  Google Scholar 

  • Cai M, He LH, Yu TY (2013) Molecular clone and expression of a NAD+-dependent glycerol-3-phosphate dehydrogenase isozyme gene from the halotolerant alga Dunaliella salina. PloS One 8:e62287

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Casais-Molina ML, Peraza-Echeverria S, Echevarria-Machado I, Herrera-Valencia VA (2016) Expression of Chlamydomonas reinhardtii CrGPDH2 and CrGPDH3 cDNAs in yeast reveals that they encode functional glycerol-3-phosphate dehydrogenases involved in glycerol production and osmotic stress tolerance. J Appl Phycol 28:219–226

    CAS  Google Scholar 

  • Chen CY, Kao AL, Tsai ZC, Chow TJ, Chang HY, Zhao XQ, Chen PT, Su HY, Chang JS (2016) Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus. Biotechnol J 11:336–344

    CAS  PubMed  Google Scholar 

  • Driver T, Trivedi DK, McIntosh OA, Dean AP, Goodacre R, Pittman JK (2017) Two glycerol-3-phosphate dehydrogenases from Chlamydomonas have distinct roles in lipid metabolism. Plant Physiol 174:2083–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gee R, Goyal A, Byerrum RU, Tolbert NE (1993) Two isoforms of dihydroxyacetone phosphate reductase from the chloroplasts of Dunaliella tertiolecta. Plant Physiol 103:243–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gentil J, Hempel F, Moog D, Zauner S, Maier UG (2017) Review: origin of complex algae by secondary endosymbiosis: a journey through time. Protoplasma 254:1835–1843

    CAS  PubMed  Google Scholar 

  • Ghasemi Y, Rasoul-Amini S, Naseri AT, Montazeri-Najafabady N, Mobasher MA, Dabbagh F (2012) Microalgae biofuel potentials. Prikl Biokhim Mikrobiol 48:150–168

    CAS  PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Meth 6:343-U341

    CAS  Google Scholar 

  • Gilmour DJ (2019) Microalgae for biofuel production. Adv Appl Microbiol 109:1–30

    CAS  PubMed  Google Scholar 

  • Gomma AE, Lee SK, Sun SM, Yang SH, Chung G (2015) Improvement in oil production by increasing malonyl-CoA and glycerol-3-phosphate pools in Scenedesmus quadricauda. Indian J Microbiol 55:447–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Kang NK, Kim YU, Wang Z, Wei L, Xin Y, Shen C, Wang Q, You W, Lim JM, Jeong SW, Park YI, Oh HM, Pan K, Poliner E, Yang G, Li-Beisson Y, Li Y, Hu Q, Poetsch A, Farre EM, Chang YK, Jeong WJ, Jeong BR, Xu J (2020) The NanDeSyn database for Nannochloropsis systems and synthetic biology. Plant J 104:1736–1745

    CAS  PubMed  Google Scholar 

  • Gschloessl B, Guermeur Y, Cock JM (2008) HECTAR: A method to predict subcellular targeting in heterokonts. BMC Bioinformatics 9:393

    PubMed  PubMed Central  Google Scholar 

  • Han SF, Jin WB, Tu RJ, Wu WM (2015) Biofuel production from microalgae as feedstock: current status and potential. Crit Rev Biotech 35:255–268

    CAS  Google Scholar 

  • He Q, Qiao D, Bai L, Zhang Q, Yang W, Li Q, Cao Y (2007) Cloning and characterization of a plastidic glycerol 3-phosphate dehydrogenase cDNA from Dunaliella salina. J Plant Physiol 164:214–220

    CAS  PubMed  Google Scholar 

  • He Q, Toh JD, Ero R, Qiao Z, Kumar V, Serra A, Tan J, Sze SK, Gao YG (2020) The unusual di-domain structure of Dunaliella salina glycerol-3-phosphate dehydrogenase enables direct conversion of dihydroxyacetone phosphate to glycerol. Plant J 102:153–164

    CAS  PubMed  Google Scholar 

  • Herrera-Valencia VA, Macario-Gonzalez LA, Casais-Molina ML, Beltran-Aguilar AG, Peraza-Echeverria S (2012) In silico cloning and characterization of the glycerol-3-phosphate dehydrogenase (GPDH) gene family in the green microalga Chlamydomonas reinhardtii. Curr Microbiol 64:477–485

    CAS  PubMed  Google Scholar 

  • Hirayama A, Sueyoshi MN, Nakano T, Ota Y, Kurita H, Tasaki M, Kuroiwa Y, Kato T, Serizawa S, Kojima K, Al-Maamari RS, Hasegawa T, Thomas-Hall SR, Schenk PM (2022) Development of large-scale microalgae production in the Middle East. Bioresour Technol 343:126036

    CAS  PubMed  Google Scholar 

  • Hsieh HJ, Su CH, Chien LJ (2012) Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. J Microbiol 50:526–534

    CAS  PubMed  Google Scholar 

  • Kang NK, Jeon S, Kwon S, Koh HG, Shin SE, Lee B, Choi GG, Yang JW, Jeong B-r, Chang YK (2015) Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels 8:200

    PubMed  PubMed Central  Google Scholar 

  • Kang NK, Baek K, Koh HG, Atkinson CA, Ort DR, Jin Y-S (2022) Microalgal metabolic engineering strategies for the production of fuels and chemicals. Bioresour Technol 345:126529

    CAS  PubMed  Google Scholar 

  • Klaitong P, Fa-Aroonsawat S, Chungjatupornchai W (2017) Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2. Microb Cell Fact 16:61

    PubMed  PubMed Central  Google Scholar 

  • Klock G, Kreuzberg K (1989) Kinetic properties of a sn-glycerol-3-phosphate dehydrogenase purified from the unicellular alga Chlamydomonas reinhardtii. Biochimica et Bophysica Acta 991:347–352

    CAS  Google Scholar 

  • Koh HG, Kang NK, Jeon S, Shin SE, Jeong BR, Chang YK (2019) Heterologous synthesis of chlorophyll b in Nannochloropsis salina enhances growth and lipid production by increasing photosynthetic efficiency. Biotech Biofuels Bioprod 12:122

    Google Scholar 

  • Koh HG, Cho JM, Jeon S, Chang YK, Lee B, Kang NK (2023) Transcriptional insights into Chlorella sp. ABC-001: a comparative study of carbon fixation and lipid synthesis under different CO2 conditions. Biotech Biofuels Bioprod 16:113

    CAS  Google Scholar 

  • Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA (2015) Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep 5:10775

    PubMed  PubMed Central  ADS  Google Scholar 

  • Kwon S, Kang NK, Koh HG, Shin SE, Lee B, Jeong BR, Chang YK (2018) Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina. Biotechnol Bioeng 115:331–340

    CAS  PubMed  Google Scholar 

  • Li DW, Cen SY, Liu YH, Balamurugan S, Zheng XY, Alimujiang A, Yang WD, Liu JS, Li HY (2016) A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol 229:65–71

    CAS  PubMed  Google Scholar 

  • Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. Febs Lett 583:3966–3973

    CAS  PubMed  Google Scholar 

  • Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int 2015:519513

    PubMed  PubMed Central  Google Scholar 

  • Morales-Sanchez D, Kim Y, Terng EL, Peterson L, Cerutti H (2017) A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in Chlamydomonas reinhardtii. Plant J 90:1079–1092

    CAS  PubMed  Google Scholar 

  • Nascimento IA, Marques SSI, Cabanelas ITD, Pereira SA, Druzian JI, de Souza CO, Vich DV, de Carvalho GC, Nascimento MA (2013) Screening microalgae strains for biodiesel production: Lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenerg Res 6:1–13

    CAS  Google Scholar 

  • Parsaeimehr A, Sun Z, Dou X, Chen Y-F (2015) Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine. Biotechnol Biofuels 8:11

    PubMed  PubMed Central  Google Scholar 

  • Raymond JA, Morgan-Kiss R, Stahl-Rommel S (2020) Glycerol is an osmoprotectant in two antarctic Chlamydomonas species from an ice-covered saline lake and is synthesized by an unusual bidomain enzyme. Front Plant Sci 11:1259

    PubMed  PubMed Central  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Meth 9:676–682

    CAS  Google Scholar 

  • Shetty P, Gitau MM, Maroti G (2019) Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8:12

    Google Scholar 

  • Singh V, Singh PK, Siddiqui A, Singh S, Banday ZZ, Nandi AK (2016) Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants. J Plant Res 129:285–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soni VK, Krishnapriya R, Sharma RK (2021) Algae: Biomass to biofuel. Meth Mol Biol 2290:31–51

    CAS  Google Scholar 

  • Wang C, Li Y, Lu J, Deng X, Li H, Hu Z (2018) Effect of overexpression of LPAAT and GPD1 on lipid synthesis and composition in green microalga Chlamydomonas reinhardtii. J Appl Phycol 30:1711–1719

    CAS  PubMed  Google Scholar 

  • Wang N, Qian Z, Luo M, Fan S, Zhang X, Zhang L (2018) Identification of salt stress responding genes using transcriptome analysis in green alga Chlamydomonas reinhardtii. Int J Mol Sci 19:3359

    PubMed  PubMed Central  Google Scholar 

  • Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y, Luo M, Gerken H, Liu J (2017) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga Nannochloropsis oceanica. Biotechnol Biofuels 10:174

  • Wu Q, Lan Y, Cao X, Yao H, Qiao D, Xu H, Cao Y (2019) Characterization and diverse evolution patterns of glycerol-3-phosphate dehydrogenase family genes in Dunaliella salina. Gene 710:161–169

    CAS  PubMed  Google Scholar 

  • Xin Y, Lu Y, Lee Y-Y, Wei L, Jia J, Wang Q, Wang D, Bai F, Hu H, Hu Q, Liu J, Li Y, Xu J (2017) Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases. Mol Plant 10:1523–1539

    CAS  PubMed  Google Scholar 

  • Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9

    PubMed  Google Scholar 

  • Yao Y, Lu Y, Peng KT, Huang T, Niu YF, Xie WH, Yang WD, Liu JS, Li HY (2014) Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels Bioprod 7:110

    Google Scholar 

  • Zhao Y, Li X, Wang F, Zhao X, Gao Y, Zhao C, He L, Li Z, Xu J (2018) Glycerol-3-phosphate dehydrogenase (GPDH) gene family in Zea mays L.: Identification, subcellular localization, and transcriptional responses to abiotic stresses. PloS One 13:e0200357

    PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Sun J, Fa Y, Liu X, Lindblad P (2022) Enhancing microalgal lipid accumulation for biofuel production. Front Microbiol 13:1024441

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2015M3D3A1A01064882) and Basic Science Research Capacity Enhancement Project through Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (No. 2019R1A6C101052) .

Author information

Authors and Affiliations

Authors

Contributions

HGK, YKC, and NKK conceptualized and designed the experiments. HGK performed the experiments and analyzed the data. HGK and NKK drafted the manuscript and prepared the figures. All authors reviewed and approved the final version of the paper.

Corresponding author

Correspondence to Nam Kyu Kang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 188 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, H.G., Chang, Y.K. & Kang, N.K. Enhancing lipid productivity in Nannochloropsis salina by overexpression of endogenous glycerol-3-phosphate dehydrogenase. J Appl Phycol 36, 73–85 (2024). https://doi.org/10.1007/s10811-023-03141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03141-6

Keywords

Navigation