Skip to main content

Advertisement

Log in

Differential spatial–temporal dynamics of Alexandrium species revealed using metabarcoding analysis by the 18S rDNA V4 region in Jiaozhou Bay, China

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The dinoflagellate genus Alexandrium hosts many toxigenic species with remarkable negative influence on ecosystems and human health by developing harmful algal blooms (HABs). Despite 34 Alexandrium species having been characterized with unique taxonomical features, relatively few Alexandrium species have been identified and traced in ecological studies, largely due to the limited resolution of morphology-based methodologies and demanding workload associated with ecological studies. Thus, both diversity and spatial–temporal dynamics of Alexandrium species in marine ecosystems remain poorly resolved and understood, leading to severe under appreciation of Alexandrium species in ecosystems. In this project, metabarcoding of the 18S rDNA V4 region was applied for the first time to quantitatively ascertain biodiversity and spatial–temporal dynamics of Alexandrium species in Jiaozhou Bay, a semi-enclosed model ecosystem in Qingdao, China. Eight known Alexandrium species (A. affine, A. andersonii, A. catenella, A. leei, A. minutum, A. ostenfeldii, A. pacificum, and A. pohangense), one unidentified Alexandrium species, and possibly three additional Alexandrium species (A. hiranoi, A. pseudogonyaulax, A. insuetum) were successfully identified in this study, compared to only four previously reported Alexandrium species in Jiaozhou Bay, demonstrating the competitive strength of metabarcoding technology in ecological research of Alexandrium species. Quantitative analysis showed that most Alexandrium species displayed strong temporal dynamics with high abundance in months with relative high temperature. In particular, Alexandrium affine displayed a strong preference from June to December, peaking in September, suggesting that temperature is an important driving factor for the temporal dynamics of Alexandrium species. However, Alexandrium catenella displayed preference from January to May. Metabarcoding analysis could be widely applied for detection and study of spatial–temporal dynamics of Alexandrium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9 
Fig. 10

Similar content being viewed by others

Data availability

The sequencing results (raw data) have been submitted to NCBI, and the BioProject numbers are PRJNA577777 and PRJNA733859.

References

  • Anderson DM (1980) Effects of temperature conditioning on development and germination of Gonyalax tamarensis (Dinophyceae) hypnozygotes. J Phycol 16:166–172

    Google Scholar 

  • Anderson DM, Alpermann TJ, Cembella AD, Collos Y, Masseret E, Montresor M (2012) The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10–35

    PubMed  PubMed Central  Google Scholar 

  • Anderson DM, Stock CA, Keafer BA, Bronzino Nelson A, Thompson B, McGillicuddy DJ, Keller M, Matrai PA, Martin J (2005) Alexandrium fundyense cyst dynamics in the Gulf of Maine. Deep Sea Res II 52:2522–2542

    Google Scholar 

  • Anderson DM, Rengefors K (2006) Community assembly and seasonal succession of marine dinoflagellates in a temperate estuary – the importance of life cycle events and predation. Limnol Oceanogr 51:860–873

    Google Scholar 

  • Asakawa M, Miyazawa K, Takayama H, Noguchi T (1995) Dinoflagellate Alexandrium tamarense as the source of paralytic shellfish poison (PSP) contained in bivalves from Hiroshima Bay, Hiroshima Prefecture, Japan. Toxicon 33:691–697

    CAS  PubMed  Google Scholar 

  • Balech E (1995) The genus Alexandrium Halim (Dinoflagellata). Sherkin Island Marine Station, Sherkin Island, Co, Cork, Ireland

  • Baverstock PR, Johnson AM (1990) Ribosomal RNA nucleotide sequence: a comparison of newer methods used for its determination, and its use in phylogenetic analysis. Aust Syst Bot 3:101–110

    Google Scholar 

  • Bravo I, Vila M, Masó M, Figueroa RI, Ramilo I (2008) Alexandrium catenella and Alexandrium minutum blooms in the Mediterranean Sea: Toward the identification of ecological niches. Harmful Algae 7:515–522

    CAS  Google Scholar 

  • Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643

    PubMed  PubMed Central  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Meth 13:581–583

    CAS  Google Scholar 

  • Castell Perez C, Roy S, Levasseur M, Anderson DM (1998) Control of germination of Alexandrium tamarense (Dinophyceae) cysts from the lower St. Lawrence estuary (Canada). J Phycol 34:242–249

    Google Scholar 

  • Chen N (2020) Metabarcoding analysis of harmful algal blooms: Opportunities and challenges. Mar Sci 44:116–134

    Google Scholar 

  • Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK (2010) Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4:1053–1059

    PubMed  Google Scholar 

  • Conway JR, Lex A, Gehlenborg N (2017) UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33:2938–3940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo BG, Keafer BA, Ralston DK, Lind H, Farber D, Anderson DM (2011) Dynamics of Alexandrium fundyense blooms and shellfish toxicity in the Nauset Marsh System of Cape Cod (Massachusetts, USA). Harmful Algae 12:26–38

    PubMed  PubMed Central  Google Scholar 

  • Eckford-Soper LK, Bresnan E, Lacaze JP, Green DH, Davidson K (2016) The competitive dynamics of toxic Alexandrium fundyense and non-toxic Alexandrium tamarense: The role of temperature. Harmful Algae 53:135–144

    PubMed  Google Scholar 

  • Egge ES, Eikrem W, Edvardsen B (2015a) Deep-branching novel lineages and high diversity of haptophytes in the Skagerrak (Norway) uncovered by 454 pyrosequencing. J Eukaryot Microbiol 62:121–140

    CAS  PubMed  Google Scholar 

  • Egge ES, Johannessen TV, Andersen T, Eikrem W, Bittner L, Larsen A, Sandaa RA, Edvardsen B (2015b) Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing. Mol Ecol 24:3026–3042

    PubMed  PubMed Central  Google Scholar 

  • Gao Y (2015) Application of quantitative PCR and Imaging FlowCytobot in the study of Alexandrium blooms. Chinese Academy of Sciences (Institute of Oceanology), Qingdao

  • Gu H (2011) Morphology, phylogenetic position, and ecophysiology of Alexandrium ostenfeldii (Dinophyceae) from the Bohai Sea, China. J Syst Evol 49:606–616

    Google Scholar 

  • Gu H, Zeng N, Liu T, Yang W, Müller A, Krock B (2013) Morphology, toxicity, and phylogeny of Alexandrium (Dinophyceae) species along the coast of China. Harmful Algae 27:68–81

    Google Scholar 

  • Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. (2012) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:D597–604

  • Guiry MD, Guiry GM (2022) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org. Accessed 17 April 2023

  • Guo S, Zhu M, Zhao Z, Liang J, Zhao Y, Du J, Sun X (2019) Spatial-temporal variation of phytoplankton community structure in Jiaozhou Bay, China. J Oceanol Limnol 37:1611–1624

    CAS  Google Scholar 

  • Huang B, Wei N, Tang J, Jin Y (2018) Changes of phytoplankton community structure and diversity in the south yellow sea during 2007–2017. Environ Monit China 34:137–148

    Google Scholar 

  • Huang H, Gan C, Huang J, Zou C, Li H, Liu J, Yang W (2021a) Variability of Prorocentrum donghaiense response to allelopathic action from Alexandrium pacificum in laboratory culture. J Oceanol Limnol 39:1305–1315

    Google Scholar 

  • Huang H, Xu Q, Gibson K, Chen Y, Chen N (2021b) Molecular characterization of harmful algal blooms in the Bohai Sea using metabarcoding analysis. Harmful Algae 106:102066

  • Hwang DF, Tsai YH, Liao HJ, Matsuoka K, Noguchi T, Jeng SS (1999) Toxins of the dinoflagellate Alexandrium minutum Halim from the coastal waters and aquaculture ponds in southern Taiwan. Fish Sci 65:171–172

    CAS  Google Scholar 

  • Jeong HJ, Lee KH, Yoo YD, Kang NS, Song JY, Kim TH, Seong KA, Kim JS, Potvin E (2018) Effects of light intensity, temperature, and salinity on the growth and ingestion rates of the red-tide mixotrophic dinoflagellate Paragymnodinium shiwhaense. Harmful Algae 80:46–54

    PubMed  Google Scholar 

  • John U, Fensome RA, Medlin LK (2003) The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distributions within the Alexandrium tamarense “species complex” (Dinophyceae). Mol Biol Evol 20:1015–1027

    CAS  PubMed  Google Scholar 

  • John U, Litaker RW, Montresor M, Murray S, Brosnahan ML, Anderson DM (2014) Formal revision of the Alexandrium tamarense species complex (Dinophyceae) taxonomy: the introduction of five species with emphasis on molecular-based (rDNA) classification. Protist 165:779–804

    PubMed  PubMed Central  Google Scholar 

  • Kim H, Kang D, Jung SW, Kim M (2019) High-frequency acoustic backscattering characteristics for acoustic detection of the red tide species Akashiwo sanguinea and Alexandrium affine. J Oceanol Limnol 37:1268–1276

  • Klemm K, Cembella A, Clarke D, Cusack C, Arneborg L, Karlson B, Liu Y, Naustvoll L, Siano R, Gran-Stadniczenko S, John U (2022) Apparent biogeographical trends in Alexandrium blooms for northern Europe: identifying links to climate change and effective adaptive actions. Harmful Algae 119:102335

  • Kolde R (2019) pheatmap: Pretty Heatmaps. R package version 1.0.12. https://CRAN.R-project.org/package=pheatmap; accessed 30 November 2022

  • Kremp A, Lindholm T, Dreßler N, Erler K, Gerdts G, Eirtovaara S, Leskinen E (2009) Bloom forming Alexandrium ostenfeldii (Dinophyceae) in shallow waters of the Åland Archipelago, Northern Baltic Sea. Harmful Algae 8:318–328

    CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh JW, Bryant D, Nakagawa S (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Google Scholar 

  • Li P, Ma Q, Xu S, Liu W, Ma Z, Ni G (2021) Opposite growth responses of Alexandrium minutum and Alexandrium catenella to photoperiods and temperatures. Plants 10:1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li T (2007) Effects of nitrogen and phosphorus on growth and toxin production of Alexandrium catenella (ACDH). Chinese Academy of Sciences (Institute of Oceanology), Qingdao

  • Li Y, Tang Y, Shen P, Gu H, Tan Y (2017) Distribution of dinoflagellate resting cysts in surface sediment of Jiaozhou Bay, China. Oceanol Limnol Sin 48:760–766

    Google Scholar 

  • Lim AS, Jeong HJ, Kim JH, Lee SY (2015) Description of the new phototrophic dinoflagellate Alexandrium pohangense sp. nov. from Korean coastal waters. Harmful Algae 46:49–61

    CAS  Google Scholar 

  • Lim AS, Jeong HJ, Ok JH, You JH, Kang HC, Kim SJ (2019) Effects of light intensity and temperature on growth and ingestion rates of the mixotrophic dinoflagellate Alexandrium pohangense. Mar Biol 166:98

    Google Scholar 

  • Liu S, Chen N (2021) Advances in biodiversity analysis of phytoplankton and harmful algal bloom species in the Jiaozhou Bay. Mar Sci 45:170–188

    Google Scholar 

  • Liu S, Cui Z, Zhao Y, Chen N (2022) Composition and spatial-temporal dynamics of phytoplankton community shaped by environmental selection and interactions in the Jiaozhou Bay. Water Res 218:118488

  • Liu S, Gibson K, Cui Z, Chen Y, Sun X, Chen N (2020) Metabarcoding analysis of harmful algal species in Jiaozhou Bay. Harmful Algae 92:101772

  • Majaneva M, Hyytiainen K, Varvio SL, Nagai S, Blomster J (2015) Bioinformatic amplicon read processing strategies strongly affect eukaryotic diversity and the taxonomic composition of communities. PLoS One 10:e0130035

  • Medinger R, Nolte V, Pandey RV, Jost S, Ottenwalder B, Schlotterer C, Boenigk J (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40

    PubMed  PubMed Central  Google Scholar 

  • Mertens KN, Adachi M, Anderson DM, Band-Schmidt CJ, Bravo I, Brosnahan ML, Bolch CJS et al (2020) Morphological and phylogenetic data do not support the split of Alexandrium into four genera. Harmful Algae 98:101902

    PubMed  Google Scholar 

  • Min J, Kim KY (2023) Seasonal change and subniche dynamics of three Alexandrium species in the Korea Strait. Harmful Algae 125:102420

    CAS  PubMed  Google Scholar 

  • Nagai S, Hida K, Urusizaki S, Takano Y, Hongo Y, Kameda T, Abe K (2016) Massively parallel sequencing-based survey of eukaryotic community structures in Hiroshima Bay and Ishigaki Island. Gene 576:681–689

    CAS  PubMed  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    CAS  PubMed  Google Scholar 

  • Kruskal JB (1983) An overview of squence comparison In: Sankoff D, Kruskal JB (ed.) Time warps, string edits and macromolecules: the theory and practice of sequence comparison. Addison Wesley, NY, pp 1–44

  • Pan J, Li R, Li Y, Sun P (2010) Distribution of dinoflagellate cysts in surface sediments from the southern yellow sea in autumn. Adv Mar Sci 28:41–49

    Google Scholar 

  • Pilskaln CH, Anderson DM, McGillicuddy DJ, Keafer BA, Hayashi K, Norton K (2014) Spatial and temporal variability of Alexandrium cyst fluxes in the Gulf of Maine: Relationship to seasonal particle export and resuspension. Deep Sea Res 2 103:40–54

  • Qi Y, Qian F (1994) Taxonomic studies on red tide causative dinoflagellates in DaPeng Bay, South China sea. Oceanol Limnol Sin 25:206–210+235

  • Sampedro N, Franco JM, Zapata M, Riobó P, Garcés E, Penna A, Caillaud A, Diogène J, Cacho E, Camp J (2013) The toxicity and intraspecific variability of Alexandrium andersonii Balech. Harmful Algae 25:26–38

    Google Scholar 

  • Scholin CA, Hallegraeff GM, Anderson DM (1995) Molecular evolution of the Alexandrium tamarense species complex (Dinophyceae): dispersal in the North American and West Pacific regions. Phycologia 34:472–485

    Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shikata T, Taniguchi E, Sakamoto S, Kitatsuji S, Yamasaki Y, Yoshida M, Oikawa H (2020) Phylogeny, growth and toxicity of the noxious red-tide dinoflagellate Alexandrium leei in Japan. Reg Stud Mar Sci 36:101265

  • Song X, Zhai X, Hao S, Shang L, Deng Y, Chai Z, Chen J, Hu Z, Tang YZ (2021) Novel non-paralytic shellfish toxin and non-spirolide toxicity to finfish, brine shrimp, and rotifer observed in a culture of the dinoflagellate Alexandrium insuetum isolated from the coastal water of China. Front Mar Sci 8:735752

  • Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–31

    CAS  PubMed  Google Scholar 

  • Su M, Koike K (2013) A red tide off the Myanmar coast: Morphological and genetic identification of the dinoflagellate composition. Harmful Algae 27:149–158

    Google Scholar 

  • Wei T, Simko V (2017) R package "corrplot": Visualization of a Correlation Matrix (Version 0.84). https://github.com/taiyun/corrplot; Accessed 30 November 2022

  • Wickham H (2009) Ggplot2: Elegant Graphics for Data Analysis. Springer-verlag New York. https://ggplot2.tidyverse.org. Accessed 30 November 2022

  • Xu X, Yu Z, Cheng F, He L, Cao X, Song X (2017) Molecular diversity and ecological characteristics of the eukaryotic phytoplankton community in the coastal waters of the Bohai Sea, China. Harmful Algae 61:13–22

    Google Scholar 

  • Xu Y, He X, Li H, Zhang T, Lei F, Gu H, Anderson DM (2021) Molecular identification and toxin analysis of Alexandrium spp. in the Beibu Gulf: First report of toxic A. tamiyavanichii in Chinese coastal waters. Toxins (Basel) 13(2):161

  • Zhu G, Shi Q, Zhang J, Xu W, Zhu D, Chen Q (2009) Studies on phytoplankton and water environmental quality in sea area near Qiqu Archipelago. Acta Oceanol Sin 31:149–158

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to colleagues from the Jiaozhou Bay Marine Ecosystem Research Station for the opportunity to participate in the investigation expeditions. Statistical analyses were supported by Oceanographic Data Center, IOCAS.

Funding

This research was supported by the Natural Science Foundation of China (42176162, 41906118), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB42000000), the Chinese Academy of Sciences Pioneer Hundred Talents Program (to Nansheng Chen), the Taishan Scholar Project Special Fund (to Nansheng Chen), the Qingdao Innovation and Creation Plan (Talent Development Program—5th Annual Pioneer and Innovator Leadership Award to Nansheng Chen, 19–3-2–16-zhc), and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Contributions

Xiangxiang Ding: Writing—Original Draft, Methodology, Data Curation, Formal analysis, Validation, Visualization, Writing—review & editing.

Shuya Liu: Software, Investigation, Methodology, Data Curation, Formal analysis, Validation, Visualization, Writing—review & editing.

Zongmei Cui: Methodology, Data Curation, Investigation, Writing—review & editing.

Yongfang Zhao: Resources.

Nansheng Chen: Conceptualization, Funding acquisition, Project administration, Supervision, Resources, Writing—review & editing.

Corresponding author

Correspondence to Nansheng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Liu, S., Cui, Z. et al. Differential spatial–temporal dynamics of Alexandrium species revealed using metabarcoding analysis by the 18S rDNA V4 region in Jiaozhou Bay, China. J Appl Phycol 35, 1727–1742 (2023). https://doi.org/10.1007/s10811-023-02970-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-02970-9

Keywords

Navigation