Skip to main content

Advertisement

Log in

Cultivation of Osmundea pinnatifida (Hudson) Stackhouse in the Algem® photobioreactor system

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cultivation of Osmundea pinnatifida (Hudson) Stackhouse in flasks and/or tanks has yet to be developed beyond the lab scale. However, establishment of a methodology for the supply of this red seaweed has great potential, considering that it can be exploited either as food or as a source of biologically active compounds with potential nutraceutical, pharmaceutical and cosmetic applications. This study investigates the possibility of growing O. pinnatifida in the Algem® photo bioreactor (PBR) system, normally utilised for microalgae cultivation, and examines the antioxidant content of the biomass. The cultures were incubated in the Algem® PBRs under a set of environmental parameters established in a previous seasonality study at a single location on the west coast of Scotland. The growth of the cultures in the PBR was monitored, the biomass assessed for antioxidant content, and results compared with seasonal samples, to assess how the PBR system affects the biochemistry of this species. Analyses centred on antioxidant activity and included Total Phenolic Content (TPC) and Ferric Iron Reducing Antioxidant Power (FRAP). A significant increase in the antioxidant content, two to five-time higher compared to wild samples, was achieved by cultivating the biomass in the PBR. This study highlights that the production of antioxidant compounds in O. pinnatifida can be improved by increasing photoperiod and light intensity and manipulating the wavelength. This information provides important insights into how cultivation conditions for this species can be tailored to increase production and improve the composition of the product of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that all relevant data supporting the findings of this study are included in the article and its supplementary information files.

References

  • Awad NE (2000) Biologically active steroid from the green algae Ulva lactuca. Phytother Res 14:641–643

    Article  CAS  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  • Bezerra AF, Marinho-Soriano E (2010) Cultivation of the red seaweed Gracilaria birdiae (Gracilariales, Rhodophyta) in tropical waters of northeast Brazil. Biomass Bioenergy 34:1813–1817

    Article  Google Scholar 

  • Biancacci C (2019) Towards a sustainable production of Osmundea pinnatifida: insight into the cultivation and biochemical composition of the species. Doctoral Thesis, University of Aberdeen and The Scottish Association for Marine Science, Scotland, pp 342

  • Biancacci C, McDougall GJ, Allwood JW, Day JG, Davidson K, Stanley MS (2021) LC-MSn profiling reveals seasonal variation in the composition of Osmundea pinnatifida (Hudson) Stackhouse. J Appl Phycol 33:2443–2458

    Article  CAS  Google Scholar 

  • Biancacci C, Abell R, McDougall GJ, Day JG, Stanley MS (2022) Annual compositional variation in wild Osmundea pinnatifida (Hudson) Stackhouse from the west coast of Scotland. J Appl Phycol 34:1661–1675

    Article  CAS  Google Scholar 

  • Cruces E, Rautenberger R, Rojas-Lillo Y, Cubillos VM, Arancibia-Miranda N, Ramírez-Kushel E, Gómez I (2017) Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: differential regulation among downregulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms. Photosynth Res 131:145–157

    Article  CAS  Google Scholar 

  • D’Adamo S, Schiano di Visconte G, Lowe G, Szaub-Newton J, Beacham T, Landels A, Allen JM, Spicer A, Matthijs M (2018) Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production. Plant Biotechnol J 17:75–87

    Article  Google Scholar 

  • de Quiros R-B, Lage-Yusty MA, López-Hernández J (2010) Determination of phenolic compounds in macroalgae for human consumption. Food Chem 121:634–638

    Article  Google Scholar 

  • Deighton N, Brennan R, Finn C, Davies HV (2000) Antioxidant properties of domesticated and wild Rubus species. J Sci Food Agric 80:1307–1313

    Article  CAS  Google Scholar 

  • Evans GC (1972) The quantitative analysis of plant growth. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Freile-Pelegrin Y, Morales JL (2004) Antibacterial activity in marine algae from the coast of Yucatan, Mexico. Bot Mar 47:140–146

  • Freile-Pelegrin Y, Robledo D (2013) Bioactive phenolic compounds from algae. In: Hernández-Ledesma B, Herrero M (eds) Bioactive Compounds from Marine Foods: Plant and Animal Sources. Wiley-Blackwell, Oxford, pp 113–129

    Chapter  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweeds: Functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Huang Y, Rorrer GL (2003) Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioreactor. Biotechnol Prog 19:418–427

    Article  CAS  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  • Iliopoulou D, Roussis V, Pannecouque C, De Clercq E, Vagias C (2002) Halogenated sesquiterpenes from the red alga Laurencia obtusa. Tetrahedron 58:6749–6755

    Article  CAS  Google Scholar 

  • Karabay-Yavasoglu NU, Sukatar A, Ozdemir G, Horzum Z (2007) Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens. Phytother Res 21:153–215

    Article  CAS  Google Scholar 

  • Kasim M, Mustafa A (2017) Comparison growth of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) cultivation in floating cage and longline in Indonesia. Aquac Rep 6:49–55

    Article  Google Scholar 

  • Kaur S, Das M (2011) Functional foods: an overview. Food Sci Biotechnol 20:861–875

    Article  Google Scholar 

  • Kim S, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: A review. J Funct Foods 2:1–9

    Article  CAS  Google Scholar 

  • Kwon HJ, Bae SY, Kim KH, Han CH, Cho SH, Nam SW, Choi YH, Kim BW (2007) Induction of apoptosis in HeLa cells by ethanolic extract of Corallina pilulifera. Food Chem 104:196–201

    Article  CAS  Google Scholar 

  • Lea-Smith DJ, Ross N, Zori M, Bendall DS, Dennis JS, Scott SA, Smith AG, Howe CJ (2013) Thylakoid terminal oxidases are essential for the cyanobacterium Synechocystis sp. PCC 6803 to survive rapidly changing light intensities. Plant Physiol 162:485–495

    Article  Google Scholar 

  • Lee SH, Han JS, Heo SJ, Hwang JY, Jeon YJ (2010) Protective effects of dieckol isolated form Ecklonia cava against high glucose-induced oxidative stress in human umbilical endothelial cells. Toxicol in Vitro 24:375–438

    Article  CAS  Google Scholar 

  • Liu F, Pang SJ (2010) Stress tolerance and antioxidant enzymatic activities in the metabolisms of the reactive oxygen species in two intertidal red algae Grateloupia turuturu and Palmaria palmata. J Exp Mar Biol Ecol 382:82–87

    Article  CAS  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge, 562 p

  • Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. John Wiley and Sons, New York, 527 p

  • Maggs CA, Hommersand MH (1993) Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 3A. Ceramiales. Natural History Museum Publications, London, pp 1–444

  • Matthijs M, Fabris M, Obata T, Foubert I, Franco-Zorrilla JM, Solano R, Fernie AR, Vyverman W, Goossens A (2018) The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum. EMBO J 36:1559–1576

    Article  Google Scholar 

  • Mišurcová L (2011) Chemical composition of seaweeds. In: Kim S-K (ed) Handbook of Marine Macroalgae. Biotechnology and Applied Phycology. Wiley, Chichester, pp 173–192

    Google Scholar 

  • Munir N, Sharif N, Naz S, Mazoor F (2013) Algae: a potent antioxidant source. SJMR 1:22–31

    Google Scholar 

  • Munoz J, Freile-Pelegrin Y, Robledo D (2004) Mariculture of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) color strains in tropical waters of Yucatan, Mexico. Aquaculture 239:161–177

    Article  Google Scholar 

  • Nagayama K, Iwamura Y, Shibata T, Hirayama I, Nakamura T (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemother 50:889–893

    Article  CAS  Google Scholar 

  • Ozdemir G, Karabay NU, Dalay MC, Pazarbasi B (2004) Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother Res 18:754–757

    Article  CAS  Google Scholar 

  • Pereira H, Páramo J, Silva J, Marques A, Barros A, Maurício D, Santos T, Schulze P, Barros R, Gouveia L, Barreira L, Varela J (2018) Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO2 mitigation: from an agar plate to 100–m3 industrial photobioreactors. Sci Rep 8:5112

    Article  Google Scholar 

  • Polzin JP, Rorrer GL (2002) Halogenated monoterpene production bymicroplantlets of the marine red alga Ochtodes secundiramea within an airlift photobioreactor under nutrient medium perfusion. Biotechnol Bioeng 82:415–428

    Article  Google Scholar 

  • Prathep A, Marrs RH, Norton TA (2003) Spatial and temporal variations in sediment accumulation in an algal turf and their impact on associated fauna. Mar Biol 142:381–390

    Article  Google Scholar 

  • Rajaram R, Rameshumar S, Ahmad B, Albeshr MF (2021) Impacts of cultivation of red algae Kappaphycus alvarezii on planktonic and benthic faunal density in relation to environmental and hydrobiological parameters in tropical coastal ecosystem. Acta Ecol Sin 41:39–49

    Article  Google Scholar 

  • Rorrer GL, Cheney DP (2004) Bioprocess engineering of cell and tissue cultures for marine seaweeds. Aquac Eng 32:11–41

    Article  Google Scholar 

  • Silva JP (2015) Screening of biotechnological potential of Osmundea pinnatifida: cultivation trials and biological activities. Master’s thesis, Universidade de Coimbra, Portugal, p 92

  • Silva P, Pereira L (2020) Concise review of Osmundea pinnatifida (Hudson) Stackhouse. J Appl Phycol 32:2761–2771

    Article  Google Scholar 

  • Silva JP, Alves C, Pinteus SFG, Silva J, Ama V, Pedrosa R, Pereira L (2019) Antioxidant and antitumor potential of wild and IMTA-cultivated Osmundea pinnatifida. J Oceanol Limnol 37:825–835

    Article  CAS  Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production. A Review Renew. Sust Energ Rev 16:2347–2353

    Article  CAS  Google Scholar 

  • Stekoll MS, Lin R, Lindstrom SC (1999) Porphyra cultivation in Alaska: conchocelis growth of three indigenous species. Hydrobiologia 398:291–297

    Article  Google Scholar 

  • Stoffels L, Taunt HN, Charalambous B, Purton S (2017) Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 15:1130–1140

    Article  CAS  Google Scholar 

  • Suzuki M, Yamada H, Kurata K (2002) Dictyterpenoids A and B, two novel diterpenoids with feeding-deterrent activity from the brown alga Dictyota okamurae. J Nat Prod 65:121–125

    Article  CAS  Google Scholar 

  • Thomas NV, Kim SK (2011) Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ Toxicol Pharm 32:325–335

    Article  CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  Google Scholar 

  • Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomolec Eng 20:255–259

    Article  CAS  Google Scholar 

  • van de Lagemaat E, de Groot L, Heuvel, van den Heuvel EGHM (2019) Vitamin B12 in relation to oxidative stress: A systematic review. Nutrients 11:482

    Article  Google Scholar 

  • Vuong QV, Hirun S, Chuen TLK, Goldsmith CD, Bowyer MC, Chalmers AC, Phillips PA, Scarlett CJ (2014) Physicochemical composition, antioxidant and anti-proliferative capacity of a lilly pilly (Syzygium paniculatum) extract. J Herb Med 4:134–140

    Article  Google Scholar 

  • Whitton R, Santinelli M, Pidou M, Ometto F, Henderson R, Roddick F, Jarvis P, Villa R, Jefferson B (2018) Tertiary nutrient removal from wastewater by immobilised microalgae: impact of wastewater nutrient characteristics and hydraulic retention time (HRT). H2Open J 1:12–25

  • Xu N, Fan X, Yan X, Li X, Niu R, Tseng CK (2003) Antibacterial bromophenols from the marine red algae Rhodomela confervoides. Phytochemistry 62:1221–1226

    Article  CAS  Google Scholar 

  • Xu Y, Ibrahim IM, Harve PJ (2016) The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (Chlorophyta) CCAP 19/30. Plant Physiol Biochem 106:305–315

    Article  CAS  Google Scholar 

  • Xu Y, Ibrahim IM, Wosu IC, Ben-Amotz A, Harvey PJ (2018) Potential of new isolates of Dunaliella salina for natural β-carotene production. Biology 7:1–14

    Article  Google Scholar 

  • Yabuta Y, Fujimura H, Kwak CS, Enomoto T, Watanabe F (2010) Antioxidant activity of the phycoeryth-robilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci Technol Res 16:347–351

    Article  CAS  Google Scholar 

  • Young R, Purton S (2018) CITRIC: cold-inducible translational read-through in the chloroplast of Chlamydomonas reinhardtii using a novel temperature-sensitive transfer RNA. Microb Cell Fact 17:1–12

    Article  Google Scholar 

  • Yuan YV, Bone DE, Carrington MF (2005) Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem 91:485–494

    Article  CAS  Google Scholar 

  • Zhang Q, Li N, Zhou G, Lu X, Xu Z, Li Z (2003) In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodophyta) in aging mice. Pharmacol Res 48:151–155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was part of a Ph.D. project awarded by the University of Aberdeen, with The Scottish Association for Marine Science (SAMS), the University of the Highlands and Islands (UHI), and the James Hutton Institute as academic partners.

Funding

This research was part of a Ph.D. project with the financial support from the Industrial Biotechnology Innovation Centre (IBioIC), Highlands and Islands Enterprise (HIE) and Marine Alliance for Science and Technology for Scotland (MASTS).

Author information

Authors and Affiliations

Authors

Contributions

Cecilia Biancacci: Conceptualization, Methodology, Validation, Formal analyses, Investigation, Writing—Original Draft, Writing—Review & Editing, Visualization Gordon J. McDougall: Writing—Review & Editing, Supervision, Resources John G. Day: Writing—Review & Editing, Supervision, Resources Michele S. Stanley: Conceptualization, Writing—Review & Editing, Supervision, Resources, Project Administration, Funding acquisition.

Corresponding author

Correspondence to Cecilia Biancacci.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 798 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biancacci, C., McDougall, G.J., Day, J.G. et al. Cultivation of Osmundea pinnatifida (Hudson) Stackhouse in the Algem® photobioreactor system. J Appl Phycol 34, 3095–3105 (2022). https://doi.org/10.1007/s10811-022-02837-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02837-5

Keywords

Navigation