Skip to main content
Log in

Interactions between the seaweed Gracilaria and dinoflagellate Akashiwo sanguinea in an indoor co-cultivation system and the interference of bacteria

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Many studies have demonstrated that some macroalgae (including the widely cultivated red alga Gracilaria lemaneiformis) can inhibit the growth of microalgae via allelopathy and resource competition, with the former as the major contributor. However, little is known currently about whether or not and how microalgae react as a feedback to the inhibitory effects or, more generally, the interactions between seaweed and microalgae in their co-culturing system. Here, we report a laboratory-based study on the interactions between the seaweed Gracilaria lemaneiformis and the common harmful algal blooms (HABs)-forming dinoflagellate Akashiwo sanguinea. We found that while both the fresh thalli of G. lemaneiformis and the extracts of fresh and dried G. lemaneiformis could significantly inhibit the growth of A. sanguinea, the dead cells of A. sanguinea “revenged” G. lemaneiformis via promoting the growth of bacteria and consequently slowed the growth of G. lemaneiformis, which was evidenced by the lowered pH, slowed nutrients consumption in the cultures, the elevated counts of bacteria, and the reduced biomass of G. lemaneiformis. Collectively, our results showed that while G. lemaneiformis could inhibit the growth of microalgae with allelopathy as a major contributor, the death of allelopathy-affected microalgae could promote bacterial growth, which sequentially inhibits the growth of G. lemaneiformis as a feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alamsjah MA, Hirao S, Ishibashi F, Fujita Y (2005) Isolation and structure determination of algicidal compounds from Ulva fasciata. Biosci Biotechnol Biochem 69:2186–2192

    Article  CAS  PubMed  Google Scholar 

  • Alamsjah MA, Hirao S, Ishibashi F, Oda T, Fujita Y (2008) Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton. J Appl Phycol 20:713–720

    Article  CAS  Google Scholar 

  • Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela RM, Parsons ML, Rensel JEJ, Townsend DW, Trainer VL, Vargo GA (2008) Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8:39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176

    Article  Google Scholar 

  • Carmona R, Kraemer GP, Yarish C (2006) Exploring Northeast American and Asian species of Porphyra for use in an integrated finfish–algal aquaculture system. Aquaculture 252:54–65

    Article  Google Scholar 

  • Chai ZY, He ZL, Deng YY, Yang YF, Tang YZ (2018) Cultivation of seaweed Gracilaria lemaneiformis enhanced biodiversity in an eukaryotic plankton community as revealed via metagenomic analyses. Mol Ecol 27:1081–1093

    Article  PubMed  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine mariculture systems: a key towards sustainability. J Phycol 37:975–986

    Article  Google Scholar 

  • Chopin T, Robinson SMC, Troell M, Neori A, Buschmann AH, Fang J (2008) Multitrophic integration for sustainable marine aquaculture. In: Jørgensen SE, Fathi BD (eds) Ecological Engineering. Elsevier, Oxford, pp 2463–2475

    Google Scholar 

  • Chung IK, Beardall J, Mehta S, Sahoo D, Stojkovic S (2011) Using marine macroalgae for carbon sequestration: a critical appraisal. J Appl Phycol 23:877–886

    Article  CAS  Google Scholar 

  • Chung IK, Oak JH, Lee JA, Shin JA, Kim JG, Park K-S (2013) Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean Project Overview. ICES J Mar Sci 70:1038–1044

    Article  Google Scholar 

  • Cuomo V, Merrill J, Palomba I, Perretti A (1993) Systematic collection of Ulva and mariculture of Porphyra: biotechnology against eutrophication in the Venice Lagoon. Int J Environ Stud 43:141–149

    Article  Google Scholar 

  • Fei XG (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512:145–151

    Article  Google Scholar 

  • Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation - a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  • Glöckner FO, Amann R, Alfreider A, Pernthaler J, Psenner R, Trebesius K, Schleifer K (1996) An in situ hybridization protocol for detection and identification of planktonic bacteria. Syst Appl Microbiol 19:403–406

    Article  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 29–60

    Chapter  Google Scholar 

  • Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, Lewitus A, Magnien R, Marshall HG, Sellner K, Stockwell DA, Stoecker DK, Suddleson M (2008) Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 8:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo Y, Wu H, Chai Z, Xu S, Han F, Dong L, He P (2012) Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China. Aquaculture 326–329:99–105

    Article  CAS  Google Scholar 

  • Huo Y, Zhang J, Xu S, Tian Q, Zhang Y, He P (2011) Effects of seaweed Gracilaria verrucosa on the growth of microalgae: a case study in the laboratory and in an enclosed sea of Hangzhou Bay, China. Harmful Algae 10:411–418

  • Lu H, Xie H, Gong Y, Wang Q, Yang Y (2011) Secondary metabolites from the seaweed Gracilaria lemaneiformis and their allelopathic effects on Skeletonema costatum. Biochem Syst Ecol 39:397–400

    Article  CAS  Google Scholar 

  • Ma Z, Wu M, Lin L, Thring RW, Yu H, Zhang X, Zhao M (2017) Allelopathic interactions between the macroalga Hizikia fusiformis (Harvey) and the harmful blooms-forming dinoflagellate Karenia mikimotoi. Harmful Algae 65:19–26

    Article  PubMed  Google Scholar 

  • Nagayama K, Shibata T, Fujimoto K, Honjo T, Nakamura T (2003) Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture 218:601–611

    Article  CAS  Google Scholar 

  • Nan C, Zhang H, Lin S, Zhao G, Liu X (2008) Allelopathic effects of Ulva lactuca on selected species of harmful bloom-forming microalgae in laboratory cultures. Aquat Bot 89:9–15

    Article  Google Scholar 

  • Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modem mariculture. Aquaculture 231:361–391

    Article  Google Scholar 

  • Oh MY, Lee SB, Jin DH, Hong YK, Jin HJ (2010) Isolation of algicidal compounds from the red alga Corallina pilulifera against red tide microalgae. J Appl Phycol 22:453–458

    Article  CAS  Google Scholar 

  • Parsons TR, Maita Y, Lalli GM (1984) A manual of chemical and biological methods for seawater Analysis. Pergamon Press, New York

    Google Scholar 

  • Shishlyannikov SM, Zakharova YR, Volokitina NA, Mikhailov IS, Petrova DP, Likhoshway YV (2011) A procedure for establishing an axenic culture of the diatom Synedra acus subsp. radians (Kütz.) Skabibitsch. from Lake Baikal. Limnol Oceanogr Meth 9:478–484

    Article  CAS  Google Scholar 

  • Smith DW, Horne AJ (1988) Experimental measurement of resource competition between planktonic microalgae and macroalgae (seaweeds) in mesocosms simulating the San Francisco Bay-Estuary, California. Hydrobiologia 159:259–268

    Article  Google Scholar 

  • Steidinger KA, Tangen K (1997) Dinoflagellates. In: Tomas CR (ed) Identifying marine diatoms and dinoflagellates. Academic Press, New York, pp 387–598

    Google Scholar 

  • Tang YZ, Gobler CJ (2011) The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10:480–488

    Article  Google Scholar 

  • Tang YZ, Gobler CJ (2015) Sexual resting cyst production by the dinoflagellate Akashiwo sanguinea: a potential mechanism contribution to the ubiquitous distribution of a harmful alga. J Phycol 51:298–309

    Article  PubMed  Google Scholar 

  • Tang YZ, Kang Y, Berry D, Gobler CJ (2015) The ability of the red macroalga, Porphyra purpurea (Rhodophyceae) to inhibit the proliferation of seven common harmful microalgae. J Appl Phycol 27:531–544

    Article  CAS  Google Scholar 

  • Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118

    Article  Google Scholar 

  • Wang R, Xiao H, Wang Y, Zhou W, Tang X (2007a) Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrum donghaiense under laboratory conditions. J Sea Res 58:189–197

    Article  Google Scholar 

  • Wang Y, Yu Z, Song X, Tang X, Zhang S (2007b) Effects of macroalgae Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of four species of bloom-forming dinoflagellates. Aquat Bot 86:139–147

    Article  Google Scholar 

  • Xu D, Gao Z, Zhang X, Qi Z, Meng C, Zhuang Z, Ye N (2011) Evaluation of the potential role of the macroalga Laminaria japonica for alleviating coastal eutrophication. Bioresour Technol 102:9912–9918

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chai Z, Wang Q, Chen W, He Z, Jiang S (2015a) Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res 9:236–244

    Article  Google Scholar 

  • Yang Y, Fei X, Song J, Hu H, Wang G, Chung I (2006) Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254:248–255

    Article  Google Scholar 

  • Yang Y, Liu Q, Chai Z, Tang YZ (2015b) Inhibition of marine coastal bloom-forming phytoplankton by commercially cultivated Gracilaria lemaneiformis (Rhodophyta). J Appl Phycol 27:2341–2352

    Article  CAS  Google Scholar 

  • Ye C, Liao H, Yang Y (2014) Allelopathic inhibition of photosynthesis in the red tide-causing marine alga, Scrippsiella trochoidea (Pyrrophyta), by the dried macroalga, Gracilaria lemaneiformis (Rhodophyta). J Sea Res 90:10–15

    Article  Google Scholar 

  • Ye C, Zhang M, Yang Y (2013) Inhibition of photosynthesis in the microalga Chaetoceros curvisetus (Bacillariophyta) by macroalga Gracilaria lemaneiformis (Rhodophyta). Chin J Oceanol Limnol 31:1174–1180

    Article  CAS  Google Scholar 

  • Zertuche-González JA, Camacho-Ibar VF, Pacheco-Ruíz I, Cabello-Pasini A, Galindo-Bect LA, Guzmán-Calderón JM, Macias-Carranza V, Espinoza-Avalos J (2009) The role of Ulva spp. as a temporary nutrient sink in a coastal lagoon with oyster cultivation and upwelling influence. J Appl Phycol 21:729–736

    Article  Google Scholar 

  • Zhang SD, Yu ZM, Song XX, Song F, Wang Y (2005) Competition for nutrients between Gracilaria lemaneiformis and Prorocentrum donghaiense. Acta Ecol Sin 25:2676–2680 ((in Chinese with English abstract))

    CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant Nos. 41977268, 61533011, 41776125, 41976134) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China (Grant No. 311021006).

Author information

Authors and Affiliations

Authors

Contributions

Z.Y.C., Z.X.H., and Y.Y.D. performed the experiments and wrote the manuscript. Y.Z.T. and Y.F.Y. conceived the study, participated in its design, and revised the manuscript.

Corresponding authors

Correspondence to Yufeng Yang or Ying Zhong Tang.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Z., Hu, Z., Deng, Y. et al. Interactions between the seaweed Gracilaria and dinoflagellate Akashiwo sanguinea in an indoor co-cultivation system and the interference of bacteria. J Appl Phycol 33, 3153–3163 (2021). https://doi.org/10.1007/s10811-021-02532-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02532-x

Keywords

Navigation