Skip to main content

Advertisement

Log in

Production of pyruvate from Ulva reticulata using the alkaliphilic, halophilic bacterium Halomonas sp. BL6

  • 23rd INTERNATIONAL SEAWEED SYMPOSIUM, JEJU
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Green macroalgae have gained attention as promising renewable sources for biorefining. Despite the wide potential availability of green macroalgae, their utilization has been limited to ethanol production, hindering their further application. In this study, we report that a bacterium, Halomonas sp. strain BL6 (isolated from a mangrove forest in Bach Long, Nam Dinh Province, Vietnam), produces pyruvate from a saccharified solution of the green seaweed Ulva reticulata and secretes it into the medium. Pyruvate, an important α-oxocarboxylic acid, plays a central role in energy and carbon metabolism in living organisms and is used mainly for the synthesis of various chemicals and polymers or as an ingredient or additive in food, cosmetics, and pharmaceuticals. To investigate the possibility of using U. reticulata from the seashore of Vietnam as biomass feedstock, the chemical composition and saccharification yield of this seaweed were studied. Dry biomass of U. reticulata was found to contain 65.5% carbohydrate, 10.3% protein, 1.8% lipid, and 10.6% ash. Reducing sugar content reached 608.79 mg g−1 of biomass after pretreatment with diluted acid and 24 h of incubation with 50 IU g−1 Viscozyme L. The resulting sugars were fermented by Halomonas sp. strain BL6 to produce pyruvate, and the maximal pyruvate concentration reached 55.23 g L−1 after 72 h of cultivation. This study is the first to report the production of valuable compounds other than bioethanol products, such as pyruvate, from U. reticulata hydrolysate by a Halomonas strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alves A, Sousa RA, Reis RL (2013) A practical perspective on ulvan extracted from green algae. J Appl Phycol 25:407–424

    CAS  Google Scholar 

  • Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ, Oren A, Bejar V, Quesada E, Ventosa A (2007) Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57:2436–2446

    CAS  PubMed  Google Scholar 

  • Berntsson S (1955) Spectrophotometric determination of pyruvic acid by salicylaldehyde method. Anal Chem 27:1659–1660

    CAS  Google Scholar 

  • Borowitzka M (1992) Algal biotechnology products and processes—matching science and economics. J Appl Phycol 4:267–279

    Google Scholar 

  • Bruno Z, Srdan G, Vuorilehto K, Durda V-R, Ralf T (2004) Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol Bioeng 85:638–646

    Google Scholar 

  • Choi JI, Kim HJ, Kim JH, Byun MW, Soo Chun B, Hyun Ahn D, Hwang YJ, Kim DJ, Kim GH, Lee JW (2009) Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds. Appl Radiat Isot 67:1277–1281

    CAS  PubMed  Google Scholar 

  • Deshavath NN, Mohan M, Veeranki VD, Goud VV, Pinnamaneni SR, Benarjee T (2017) Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production. 3 Biotech 7:139

    PubMed  PubMed Central  Google Scholar 

  • Dhasayan A, Kiran GS, Selvin J (2014) Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery. Appl Biochem Biotechnol 174:2571–2584

    CAS  PubMed  Google Scholar 

  • El Harchi M, Fakihi Kachkach EZ, El Mtili N (2018) Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. S Afr J Bot 115:161–169

    Google Scholar 

  • Fakihi Kachkach FZ, El Harchi M, El Mtili N (2014) In vitro effect of Ulva rigida extract on the growth of Lepidium sativum and Allium cepa. Moroccan J Biol 11:26–31

    Google Scholar 

  • Feng D, Liu H, Li F, Peng J, Song Q (2011) Optimization of dilute acid hydrolysis of Enteromorpha. Chin J Oceanol Limnol 29:1243–1248

    CAS  Google Scholar 

  • Hamouda RA, Sherif SA, Dawoud GTM, Ghareeb MM (2016) Enhancement of bioethanol production from Ulva fasciata by biological and chemical saccharification. Rendiconti Lincei 27:665–672

    Google Scholar 

  • Hernández-Garibay E, Zertuche-González JA, Pacheco-Ruiz I (2011) Isolation and chemicals characterization of algal polysaccharides from the green seaweed Ulva clathrata (Roth) C. Agardh. J Appl Phycol 129:491–498

  • Hong DD, Hien HM (2004) Nutritional analysis of Vietnamese seaweeds (macroalgae) for food and medicine. BioFactor 22:323–325

    CAS  Google Scholar 

  • Hong DD, Hien HM, Son PN (2007) Use of Vietnamese seaweed for functional food, medicine and biofertilizer. J Appl Phycol 19:817–826

    Google Scholar 

  • Hong DD, Hien HM, Anh HTL (2011) Studies on the analgesic and anti-inflammatory activities of Sargassum swartzii (Turner) C. Agardh (Phaeophyta) and Ulva reticulata Forsskal (Chlorophyta) in experiment animal models. Afr J Biotechnol 10:2308–2314

  • Jang SS, Shirai Y, Uchida M, Wakisaka M (2012) Production of mono sugar from acid hydrolysis of seaweed. Afr J Biotechnol 11:1953–1963

    CAS  Google Scholar 

  • Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH (2015) Conversion of red algae Gracilaria verrucosa to sugars, levulinic acid and 5 hydroxymethylfurfural. Bioprocess Biosyst Eng 38:207–217

    CAS  PubMed  Google Scholar 

  • Jiang R, Ingle KN, Golberg A (2016) Macroalgae (seaweed) for liquid transportation biofuel production: what is next? Algal Res 14:48–57

    Google Scholar 

  • Jiao GL, Yu GL, Wang W, Zhao XL, Zhang JZ, Stephen HE (2012) Properties of polysaccharides in several seaweed from Atlantic Canada and their potential anti-influenza viral activities. J Ocean Univ China 11:205–212

    CAS  Google Scholar 

  • Karray R, Hamza M, Sayadi S (2015) Evaluation of ultrasonic, acid, thermor-alkaline and enzymatic pre-treatment on anaerobic digestion of Ulva rigida for biogas production. Bioresour Technol 187:205–213

    CAS  PubMed  Google Scholar 

  • Kawai S, Ohashi K, Yoshida S, Fujii M, Mikami S, Sato N, Murata K (2014) Bacterial pyruvate production from alginate, a promising carbon source from marine brown macroalgae. J Biosci Bioeng 117:269–274

    CAS  PubMed  Google Scholar 

  • Kawata Y, Aiba S (2010) Poly(3-hydroxybutyrate) production by isolated Halomonas sp. KM-1 using waste glycerol. Biosci Biotechnol Biochem 74:175–177

    CAS  PubMed  Google Scholar 

  • Kawata Y, Kawasaki K, Shigeri Y (2012) Efficient secreted production of (R)-3-hydroxybutyric acid from living Halomonas sp. KM-1 under successive aerobic and microaerobic conditions. Appl Microbiol Biotechnol 96:913–920

    CAS  PubMed  Google Scholar 

  • Kawata Y, Jin YX, Nojiri M (2013) Efficient secretion of (R)-3-hydroxybutyric acid from Halomonas sp. KM-1 cultured with saccharified Japanese cedar under microaerobic conditions. Bioresour Technol 140:443–445

    CAS  PubMed  Google Scholar 

  • Kawata Y, Nishimura T, Matsushita T, Tsubota J (2016) Efficient production and secretion of pyruvate from Halomonas sp. KM-1 under aerobic conditions. AMB Express 6:22

    PubMed  PubMed Central  Google Scholar 

  • Kim NJ, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469

    CAS  PubMed  Google Scholar 

  • Kumar M, Trivedi N, Reddy CR, Jha B (2011) Toxic effects of imidazolium ionic liquids on the green seaweed Ulva lactuca: oxidative stress and DNA damage. Chem Res Toxicol 24:1882–1890

    CAS  PubMed  Google Scholar 

  • Lee SY, Chang JH, Lee SB (2014) Chemical composition, saccharification yield, and the potential of green seaweed Ulva pertusa. Biotechnol Bioprocess Eng 19:1022–1033

    CAS  Google Scholar 

  • Li Y, Chen J, Lun SY (2001) Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol 57:451–459

    CAS  PubMed  Google Scholar 

  • Mata JA, Martınez-Cánovas J, Quesada E, Bèjar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375

    CAS  PubMed  Google Scholar 

  • Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol 24:857–862

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Nguyen MT, Seung PC, Jinwon L, Jae HL, Sang JS (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19:161–166

    CAS  PubMed  Google Scholar 

  • Nguyen VT, Le NH, Lin SM, Steen F, De Clerk O (2013) Checklist of the marine macroalgae of Vietnam. Bot Mar 56:207–227

    Google Scholar 

  • Offei F, Mensah M, Thygesen A, Kemausuor F (2018) Seaweed bioethanol production: a process selection review on hydrolysis and fermentation. Fermentation 4:99

    CAS  Google Scholar 

  • Pádua M, Fontoura PSG, Mathias AL (2004) Chemical composition of Ulvaria oxysperma (Kützing) Bliding, Ulva lactuca (Linnaeus) and Ulva fascita (Delile). Braz Arch Biol Technol 47:49–55

    Google Scholar 

  • Pal D, Keshav A, Mazumdar B, Kumar A, Uslu H (2017) Production and recovery of pyruvic acid: recent advances. J Inst Eng India Ser E 98:165–175

    Google Scholar 

  • Parab P, Khandeparker R, Amberkar U, Khodse V (2017) Enzymatic saccharification of seaweeds into fermentable sugar by xylanase from marine Bacillus sp. strain BT21. 3. Biotech 7:296

    Google Scholar 

  • Phang SM, Yeong HY, Ganzon-Fortes E, Lewmanomont K, Parthep A, Le NH, Gerung GS, Tan KS (2016) Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam. Raffles Bull Zool 34:13–59

    Google Scholar 

  • Ra CH, Jeong GT, Shin MK, Kim SK (2013) Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour Technol 140:421–425

    CAS  PubMed  Google Scholar 

  • Redding AP, Wang Z, Keshwani DR, Cheng J (2010) High temperature diluted acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour Technol 102:1415–1424

    PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan IS, Lee KT (2015) Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydr Polym 124:311–321

    CAS  PubMed  Google Scholar 

  • Tang SK, Wang Y, Lee JC, Lou K, Park DJ, Kim CJ, Li WJ (2010) Georgenia halophila sp. nov., a halophilic actinobacterium isolated from a salt lake. Int J Syst Evol Microbiol 60:1317–1321

    CAS  PubMed  Google Scholar 

  • Teichberg M, Fox MT, Olsen YO, Valiela I, Martinetto P, Iribarne O, Muto EY, Petti MAV, Corbisier TN, Soto-Jiménez M, PáezOsuna F, Castro P, Freitas H, Zitelli A, Cardinaletti M, Tagliapietra D (2010) Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob Chang Biol 16:2624–2637

    PubMed Central  Google Scholar 

  • Trivedi N, Gupta V , Reddy C, R, K, Jha B (2013) Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour Technol 150:106–112.

  • Trung VT, Ly BM, Hau LN, Hang NT (2013) Research to produce ethanol from seaweed biomass Cladophora sp. J Mater Sci Eng B 3:670–676

    CAS  Google Scholar 

  • Tsutsui I, Huynh QN, Nguyen HD, Arai S, Yoshida T (2005) The common marine plants of southern Vietnam.  Japan Seaweed Association, Kochi, Japan. pp. 250

  • Van Maris AJ, Geertman JM, Vermeulen A, Groothuizen MK, Winkler AA, Piper MD, van Dijken JP, Pronk JT (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 70:159–166

    PubMed  PubMed Central  Google Scholar 

  • Wang D, Kim DH, Kim KH (2016) Effective production of fermentable sugars from brown macroalgae biomass. Appl Microbiol Biotechnol 100:9439–9450

    CAS  PubMed  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    CAS  PubMed  Google Scholar 

  • Wieschalka S, Blombach B, Eikmanns BJ (2012) Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 94:449–459

    CAS  PubMed  Google Scholar 

  • Wu FC, Wu JY, Lio YJ, Wang MY, Shih IL (2014) Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour Technol 156:123–131

    CAS  PubMed  Google Scholar 

  • Yaich H, Garna H, Besbes S, Paquot M, Blecker C, Attia H (2011) Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128:895–901

    CAS  Google Scholar 

  • Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442

    CAS  PubMed  Google Scholar 

  • Yonehara T, Miyata R (1994) Fermentative production of pyruvate from glucose by Torulopsis glabrata. J Ferment Bioeng 78:155–159

    CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106-NN.04-2016.06 for H.T.L.A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshikazu Kawata or Dang Diem Hong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, H.T.L., Kawata, Y., Tam, L.T. et al. Production of pyruvate from Ulva reticulata using the alkaliphilic, halophilic bacterium Halomonas sp. BL6. J Appl Phycol 32, 2283–2293 (2020). https://doi.org/10.1007/s10811-020-02035-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02035-1

Keywords

Navigation