Skip to main content

Advertisement

Log in

Use of Algae Biomass Obtained by Single-Step Mild Acid Hydrolysis in Hydrogen Production by the β-Glucosidase-Producing Clostridium beijerinckii Br21

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Macroalgae biomass is a potential feedstock for fermentative H2 production: it has high carbohydrate concentration and is lignin-free. Here, we optimize a mild acid treatment of Kappaphycus alvarezii biomass by an experimental design 24. The optimal acid treatment conditions were 90 °C, HCl concentration of 55.9 mmol/L, 0.375 g of algae mass, and 8 h of treatment. Under these conditions, the hydrolysate presented mono-, but also di- and oligosaccharides. We used this hydrolysate as substrate for fermentative hydrogen (H2) production by the Clostridium beijerinckii Br21 grown in two different conditions: (1) in medium containing galactose and no β-glucosidase activity; (2) in medium with cellobiose to stimulate β-glucosidase activity, which was 0.33U/mL. The fermentative assay conducted in the presence of the C. beijerinckii Br21 with β-glucosidase activity provided higher H2 concentration and yield as compared to the assay accomplished in the presence of the inoculum with no β-glucosidase activity—171.76 ± 2.10 and 140.95 ± 10.92 mL of H2/L, and 70.3 ± 0.9 and 62.7 ± 4.9 mL of H2/g of dry algae, respectively. Therefore, a fermentative β-glucosidase-producing organism such as C. beijerinckii Br21 can potentially complete biomass saccharification for later renewable H2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Veras, S., Mozer, T.S., dos Santos, D.C.R.M., César, A.S.: Hydrogen: trends, production and characterization of the main process worldwide. Int. J. Hydrog. Energy 42, 2018–2033 (2017)

    Article  Google Scholar 

  2. Xia, A., Cheng, J., Song, W., Su, H., Ding, L., Lin, R.: Fermentative hydrogen production using algal biomass as feedstock. Renew. Sustain. Energy Rev. 51, 209–223 (2015)

    Article  Google Scholar 

  3. Shobana, S., Kumar, G., Bakonyi, P., Saratale, G.D., Al-Muhtaseb, A.H., Nemestóthy, N., Bélafi-Bakó, K., Xia, A., Chang, J.S.: A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresour. Technol. 244(2), 1341–1348 (2017)

    Article  Google Scholar 

  4. Dincer, A., Acar, C.: Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 40, 11094–11111 (2015)

    Article  Google Scholar 

  5. Wang, J., Yin, Y.: Fermentative hydrogen production using various biomass-based materials as feedstock. Renew. Sustain. Energy Rev. 92, 284–306 (2018)

    Article  Google Scholar 

  6. Wang, J., Yin, Y.: Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb. Cell Factories 17, 22 (2018)

    Article  Google Scholar 

  7. Jung, K.W., Kim, D.H., Shin, H.S.: Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour. Technol. 102(3), 2745–2750 (2011)

    Article  Google Scholar 

  8. Vassilev, S.V., Vassileva, C.G.: Composition, properties and challenges of algae biomass for biofuel application: an overview. Fuel 181, 1–33 (2016)

    Article  Google Scholar 

  9. Park, J.H., Yoon, J.J., Park, H.D., Kim, Y.J., Lim, D.J., Kim, S.H.: Feasibility of biohydrogen production from Gelidium amansii. Int. J. Hydrog. Energy 36(21), 13997–14003 (2011)

    Article  Google Scholar 

  10. Yun, E.J., Kim, H.T., Cho, K.M., Yu, S., Kim, S., Choi, I.G., Kim, K.H.: Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour. Technol. 199, 311–318 (2016)

    Article  Google Scholar 

  11. Hargreaves, P.I., Barcelos, C.A., da Costa, A.C., Jr. Pereira, N.: Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Bioresour. Technol. 134, 257–263 (2013)

    Article  Google Scholar 

  12. Teh, Y.Y., Lee, K.T., Chen, W.H., Lin, S.C., Sheen, H.K., Tan, I.S.: Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresour. Technol. 246, 20–27 (2017)

    Article  Google Scholar 

  13. Abd-Rahim, F., Wasoh, H., Zakaria, M.R., Ariff, A., Kapri, R., Ramli, N., Siew-Ling, L.: Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis. Food Hydrocoll. 42(2), 309–315 (2014)

    Article  Google Scholar 

  14. Meinita, M.D.N., Marhaeni, B., Winanto, T., Setyaningsih, D., Hong, Y.K.: Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production. J. Ind. Eng. Chem. 27, 108–114 (2015)

    Article  Google Scholar 

  15. Siqueira, M.R., Reginatto, V.: Inhibition of fermentative H2 production by hydrolysis byproducts of lignocellulosic substrates. Renew. Energy 80, 109–116 (2015)

    Article  Google Scholar 

  16. Fonseca, B.C., Riaño-Pachón, D.M., Guazzaroni, M.E., Reginatto, V.: Genome sequence of the H2-producing Clostridium beijerinckii strain Br21 isolated from a sugarcane vinasse treatment plant. Genet. Mol. Bio. (2018) (in print)

  17. Wychen, S.V., Laurens, L.M.L.: Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP). National Renewable Energy Laborator, Golden (2013)

    Google Scholar 

  18. Wychen, S.V., Laurens, L.M.L.: Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP). National Renewable Energy Laborator, Golden (2013)

    Google Scholar 

  19. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Laboratory Analytical Procedure (LAP). National Renewable Energy Laborator, Golden (2008)

    Google Scholar 

  20. Hartree, E.F.: Determination of protein: a modification of the lowry method that gives a linear photometric response. Anal. Biochem. 48(2), 422–427 (1972)

    Article  Google Scholar 

  21. Hayashi, L., Paula, E.J., Chow, F.: Growth rate and carrageenan analyses in four strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales) farmed in the subtropical waters of São Paulo State, Brazil. J. Appl. Phycol. 19(5), 393–399 (2007)

    Article  Google Scholar 

  22. Fonseca, B.C., Guazzaroni, M.E., Reginatto, V.: Fermentative production of H2 from different concentrations of galactose by the new isolate Clostridium beijerinckii Br21. Int. J. Hydrog. Energy 41(46), 21109–21120 (2016)

    Article  Google Scholar 

  23. Park, J.-H., Cheon, H.-C., Yoon, J.-J., Park, H.-D., Kim, S.-H.: Optimization of batch dilute-acid hydrolysis for biohydrogen production from red algal biomass. Int. J. Hydrog. Energy 38, 66130–66136 (2013)

    Google Scholar 

  24. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  25. Carli, S., Meleiro, L.P., Rosa, J.C., Moraes, L.A.B., Jorge, J.A., Masui, D.C., Furriel, R.P.M.: A novel thermostable and halotolerant xylanase from Colletotrichum graminicola. J. Mol. Catal. B Enzymatic 133, S508–S517 (2016)

    Article  Google Scholar 

  26. Chen, W.H., Chen, S.Y., Khanal, S.K., Sung, S.: Kinetic study of biological hydrogen production by anaerobic fermentation. Int. J. Hydrog. Energy 31(15), 2170–2178 (2006)

    Article  Google Scholar 

  27. Souza, F.H.M., Nascimento, C.V., Rosa, J.C., Masui, D.C., Leone, F.A., Jorge, J.A., Furriel, R.P.M.: Purification and biochemical characterization of a mycelial glucose-and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem. 45(2), 272–278 (2010)

    Article  Google Scholar 

  28. Masarin, F., Cedeno, F.R., Chavez, E.G., de Oliveira, L.E., Gelli, V.C., Monti, R.: Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol. Biofuels 9, 122 (2016)

    Article  Google Scholar 

  29. Van de Velde, F., Knutsen, S.H., Usov, A.I., Rollema, H.S., A.S. Cerezo: 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci. Technol. 13(3), 73–92 (2002)

    Article  Google Scholar 

  30. Yun, E.J., Lee, S., Kim, H.T., Pelton, J.G., Kim, S., Ko, H.J., Choi, I.G., Kim, K.H.: The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ. Microbiol. 17(5), 1677–1688 (2015)

    Article  Google Scholar 

  31. Meinita, M.D., Hong, Y.K., Jeong, G.T.: Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess. Biosyst. Eng. 35, 123–128 (2012)

    Article  Google Scholar 

  32. Kumar, G., Cheon, H.C., Kim, S.H.: Effects of 5-hydromethylfurfural, levulinic acid and formic acid, pretreatment byproducts of biomass, on fermentative H2 production from glucose and galactose. Int. J. Hydrog. Energy 39(30), 16885–16890 (2014)

    Article  Google Scholar 

  33. Singh, G., Verma, A.K., Kumar, V.: Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 6(1) 3 (2016)

    Article  Google Scholar 

  34. Bruder, M., Moo-Young, M., Chung, D.A., Chou, C.P.: Elimination of carbon catabolite repression in Clostridium acetobutylicum—a journey toward simultaneous use of xylose and glucose. Appl. Microbiol. Biotechnol. 99, 7579–7588 (2015)

    Article  Google Scholar 

  35. Jung, K.W., Kim, D.H., Kim, H.W., Shin, H.S.: Optimization of combined (acid + thermal) pretreatment for fermentative hydrogen production from Laminaria japonica using response surface methodology (RSM). Int. J. Hydrog. Energy 36(16), 9626–9631 (2011)

    Article  Google Scholar 

  36. Liu, H., Wang, G.: Fermentative hydrogen production from macro-algae Laminaria japonica using anaerobic mixed bacteria. Int. J. Hydrog. Energy 39(17), 9012–9017 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

FAPESP Grant 2015/06074-1. BCF and GD received grants from CAPES; LPM and SC received scholarship from FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Reginatto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, B.C., Dalbelo, G., Gelli, V.C. et al. Use of Algae Biomass Obtained by Single-Step Mild Acid Hydrolysis in Hydrogen Production by the β-Glucosidase-Producing Clostridium beijerinckii Br21. Waste Biomass Valor 11, 1393–1402 (2020). https://doi.org/10.1007/s12649-018-0430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0430-7

Keywords

Navigation