Skip to main content
Log in

Evaluation of seaweed extracts for the control of the Asian citrus psyllid Diaphorina citri

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Insecticidal and repellent activities were evaluated on extracts from three macroalgae (Caulerpa sertularioides, Laurencia johnstonii and Sargassum horridum) against Diaphorina citri adults. The ethanolic extracts were obtained by maceration, filtration, and concentration under reduced pressure at 40 °C. Each extract was fractionated by solid-liquid methods, followed by column fractionation. The fractions obtained were analyzed by phytochemical tests to determinate their chemical composition. The three extracts showed alkaloids, terpenes, phenols, tannins, flavonoids, anthraquinones and saponins, which are associated with insecticidal and repellent activity. The repellency assay with S. horridum extract showed repellent activity over 24 h (Index of Behavioral Tendency, IBT = 0.376 ± 0.047), L. johnstonii extract showed repellency during 18 h (IBT = 0.240 ± 0.034). Although C. sertularioides extract at the beginning produced an attractant effect (during the first 4 h), it was followed by a repellent effect after 12 h (IBT = 0.297 ± 0.041). The repellent control used was Neemix 4.5 (azadirachtin) and it has a longer repellency of over the 24 h, however S. horridum had a higher repellent activity over the control during all the assay. In the insecticidal activity assay, lethal doses were calculated for each species: L. johnstonii (LD50 = 284 μg mL−1), S. horridum (LD50 = 364 μg mL−1), and C. sertularioides (LD50 = 3703 μg mL−1). Additionally, three terpenic compounds isolated from L. johnstonii were identified by GC/MS; debromolaurinterol, isolaurinterol, and laurinterol as potential insecticidal and repellent compounds. The results suggest that seaweed extracts represent an alternative in the development of agrochemicals for pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasy MA, Marzouk MA, Rabea EL, Abd-Elnabi AD (2014) Insecticidal and fungicidal activity of Ulva lactuca Linnaeus (Chlorophyta) extracts and their fractions. ARRB 4:2252–2262

    Article  Google Scholar 

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Argadoña V, Del Pozo T, San-Martín A, Rovirosa J (2000) Insecticidal activity of Plocamium cartilagineum monoterpenes. Bol Soc Chil Quim 45:371–376

    Google Scholar 

  • Asha A, Rathi JM, Raja D, Sahayaraj K (2012) Biocidal activity of two marine green algal extracts against third instar nymph of Dysdercus cingulatus (Fab.) (Hemiptera:Pyrrhocoridae). J Biopest 5:129–134

    Google Scholar 

  • Asharaja A, Sahayaraj H (2013) Screening of insecticidal activity of brown macroalgal extracts against Dysdercus cingulatus (Fab.) (Hemiptera:Pyrrhocoridae). J Biopest 6:193–203

    Google Scholar 

  • Bianco EM, Pires L, Santos GKN, Dutra KA, Reis TNV, Vasconcelos E, Cocentino A, Navarro D (2013) Larvicidal activity of seaweeds from northeastern Brazil and of a halogenated sesquiterpene against the dengue mosquito (Aedes aegypti). Ind Crop Prod 43:270–275

    Article  CAS  Google Scholar 

  • Boina DR, Onagbola EO, Salyani M, Stelinski LL (2009) Antifeedant and sublethal effects of imidacloprid on Asian citrus psyllid, Diaphorina citri. Pest Manag Sci 65:870–877

    Article  CAS  Google Scholar 

  • Bové JM (2006) Huanglongbing: a destructive, newly emerging, century-old disease of citrus. JPP 1:7–37

    Google Scholar 

  • Cetin H, Gokoglu M, Oz E (2010) Larvicidal activity of the extract of seaweed, Caulerpa scalpelliformis, against Culex pipiens. J Am Mosq Control Assoc 26:433–436

    Article  Google Scholar 

  • Choudhary A, Naughton LM, Montánchez I, Dobson AD, Rai DK (2017) Current status and future prospects of marine natural products (MNP’s) as antimicrobials. Mar Drugs 15:1–42

    Article  Google Scholar 

  • Da Graca JV (1991) Citrus greening disease. Rev Phytopathol 29:109–136

    Article  Google Scholar 

  • De Geyter E, Lambert E, Geelen D, Smagghe G (2007) Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol 1:96–105

    Google Scholar 

  • El Sayed KA, Dunbar DC, Perry TL, Wilkins SP, Hamann MT (1997) Marine natural products as prototype insecticidal agents. J Agric Food Chem 45:2735–2739

    Article  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, New York, p 333

    Google Scholar 

  • Fukuzawa A, Masamune T (1981) Laurenpinnacin ans isolaurenpinnacin: new acetylenic cyclic ethers from the marine alga Laurencia pinnata Yamada. Tetrahedron Lett 22:4081–4084

    Article  CAS  Google Scholar 

  • García-Davis S, Sifaoui I, Reyes-Batlle M, Vivero-Valdez E, Piñero JE, Lorenzo-Morales J, Fernández JJ, Díaz-Marrero AR (2018) Anti-Acanthamoeba activity of brominated sesquiterpenes from Laurencia johnstonii. Mar Drugs 16:443

    Article  Google Scholar 

  • Gupta S, Abu-Ghannam (2011) Recent developments in the application of seaweeds or seaweeds extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg 12:600–609

    Article  CAS  Google Scholar 

  • Harborne JD (1998) Phytochemical methods: guide to modern techniques of plant analysis. Chapman & Hall, London, p 302

    Google Scholar 

  • Hemingway J, Field L, Vvontas J (2002) An overview if insecticide resistance. Science 298:96–97

    Article  CAS  Google Scholar 

  • Hernández-Herrera R, Santacruz-Ruvalcaba F, Ruiz-López MA, Norrie J, Hernández-Carmona G (2013) Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J Appl Phycol 26:619–628

    Article  Google Scholar 

  • Ishaaya I, Horowitz R (2007) In focus: IPM using novel insecticides and other approaches. Pest Manag Sci 63:729

    Article  CAS  Google Scholar 

  • Ishii T, Nagamine T, Ngunyen BCQ, Tawata S (2017) Insecticidal and repellent activities of laurinterol from the Okinawan red alga Laurencia nidifica. Rec Nat Prod 11:63–68

    CAS  Google Scholar 

  • Isman M (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64:8–11

    Article  CAS  Google Scholar 

  • Jagoueix S, Bové JM, Garnier M (1994) The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the proteobacteria. Int J Syst Evol Microbiol 44:379–386

    CAS  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Prithiviraj B (2009) Seaweeds extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Manilal A, Sujith S, Sabarathnam B, Kiran G, Selvin J, Shakir C, Lipton AP (2011) Biological activity of the red alga Laurencia brandenii. Acta Bot Croat 70:81–90

    Article  CAS  Google Scholar 

  • Ouyang G, Fang X, Lu H, Zhou X, Meng X, Yu S, Guo M, Xia Y (2013) Repellency of five mineral oils against Diaphorina citri (Hemiptera: Liviidae). Fla Entomol 96:974–983

    Article  Google Scholar 

  • Peng J, Shen X, El Sayed KA, Dunbar DC, Perry TL, Wilkins SP, Hamann T (2003) Marine natural products s prototype agrochemical agents. J Agric Food Chem 51:2246–2252

    Article  CAS  Google Scholar 

  • Presidencia de la república (2018a) Available online: http://calderon.presidencia.gob.mx/2009/06/mexico-quinto-productor-mundial-de-citricos-sagarpa/ (accessed on 4 November 2018)

  • Presidencia de la república (2018b) Available online: https://www.gob.mx/senasica/documentos/huanglongbing-de-los-citricos-110925 (accessed on 4 November 2018)

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    Article  CAS  Google Scholar 

  • Sahayaraj K, Jeeva YM (2012) Nymphicidal and ovipositional efficacy of seaweed Sargassum tenerrimum (J. Agardh) against Dysdercus cingulatus (Fab.) (Pyrrhocoridae). Chilean J Agric Res 72:152–156

    Article  Google Scholar 

  • Sahayaraj K, Kalidas S (2011) Evaluation of nymphicidal and ovicidal effect of a seaweed, Padina pavonica (Linn.) (Phaeophyceae) on cotton pest, Dysdercus cingulatus (Fab). Indian J Pharm Sci 40:125–129

    CAS  Google Scholar 

  • Sahayaraj K, Rajesh S, Asha A, Rathi JM (2012) Marine algae for the cotton pest and disease management. In: Conference Proceedings of the International Conference on and Engineering (ICASE 2012). 1:49-62

  • Salvador-Neto O, Gomez SA, Machado AR, Samuels FL, Nunes da Fonseca RI, Souza-Menezes J, Morales JL, Campos E, Mury FB, Silva JR (2016) Larvicidal potential of halogenated sesquiterpene (+)-Obtusol, isolated from the alga Laurencia dendroidea J. Agardh (Ceramiales:Rhodomelaceae), against the dengue vector mosquito Aedes aegypti (Linnaeus) (Diptera:Culicidae). Mar Drugs 14:1–14

    Article  Google Scholar 

  • Sharma OP (2011) Algae, series on diversity of microbes and cryptograms. McGraw Hill, New Delhi, p 389

    Google Scholar 

  • Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262

    Article  CAS  Google Scholar 

  • Stephenson WM (1966) The effect of hydrolysed seaweed on certain plant pests and diseases. In: Gordon Young E, McLachlan JL (eds) Proceedings of the Fifth International Seaweed Symposium, Halifax. Pergamon, New York, pp 405–415

    Google Scholar 

  • Watanabe K, Umeda K, Miyakado M (1989) Isolation and identification of three insecticidal principles from the red alga Laurencia nipponica Yamada. Agric Biol Chem 53:2513–2515

    CAS  Google Scholar 

  • Yu KX, Jantan I, Ahmad R, Wong CL (2014) The major bioactive components of seaweeds and their mosquitocidal potential. Parasitol Res 113:3121–3141

    Article  Google Scholar 

  • Yu KX, Wong CL, Ahmad R, Jantan I (2015) Larvicidal activity, inhibition effect on development, histopathological alteration and morphological aberration induce by seaweed extracts in Aedes aegypti (Diptera: Culicidae). Asian Pac J Trop Med 8:1006–1012

    Article  Google Scholar 

  • Zhao H, Sun R, Albrecht U, Padmanabhan C, Wang A, Coffey MD, Girke T, Wang Z, Close TJ, Roose M, Yokomi RK, Folimonova S, Vidalakis G, Rouse R, Bowman KD, Jin H (2013) Small RNA profiling reveals phosphorus deficiency as contributing factor in symptom expression for citrus Huanglongbing disease. Mol Plant 6:301–310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Gustavo Hernández and Mauricio Muñoz thanks to the Instituto Politécnico Nacional for the support from the “Beca de Exclusividad (COFAA) and “Estimulo al Desempeño de los Investigadores (EDI).

Funding

This study received financial support from the Consejo Nacional de Ciencia y Tecnologia (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Muñoz-Ochoa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Castro, A.L., Muñoz-Ochoa, M., Hernández-Carmona, G. et al. Evaluation of seaweed extracts for the control of the Asian citrus psyllid Diaphorina citri. J Appl Phycol 31, 3815–3821 (2019). https://doi.org/10.1007/s10811-019-01896-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01896-5

Keywords

Navigation